@prefix this: . @prefix sub: . @prefix np: . @prefix dct: . @prefix xsd: . @prefix rdfs: . @prefix prov: . @prefix npx: . sub:Head { this: np:hasAssertion sub:assertion; np:hasProvenance sub:provenance; np:hasPublicationInfo sub:pubinfo; a np:Nanopublication . } sub:assertion { ""; "Environmental research"; a . ""; "Applied sciences"; a . ""; "Earth sciences"; a . ; "https://datahub.egi.eu/api/v3/onezone/shares/data/00000000007E46B7736861726547756964236161643239616133666234633734356464393231356539663536613733616366636836643138233732356634616233366362323664306662666330633132346337373565666565636865653439236361386634383464346533366532646439643230336131383431616362656563636834393661/content"; ; "2023-01-08 19:37:15.986538+00:00"; "2023-01-08 19:37:17.137555+00:00"; "Data at the Acqua Alta oceanographic tower is a collection of physical and biogeochemical observation in the northern Adriatic Sea https://www.comune.venezia.it/it/content/3-piattaforma-ismar-cnr http://www.ismar.cnr.it/infrastrutture/piattaforma-acqua-alta"; ; "PTF dataset(2009-2020) Piattaforma acqua allta"; "2023-01-08 19:37:15.986538+00:00"; a , , . ; "https://doi.org/10.1016%2Fj.marpolbul.2021.112124"; ; "2023-01-08 19:24:00.526730+00:00"; "2023-01-08 19:24:45.110405+00:00"; "Reduction in the impact of human-induced factors is capable of enhancing the environmental health. In view of COVID-19 pandemic, lockdowns were imposed in India. Travel, fishing, tourism and religious activities were halted, while domestic and industrial activities were restricted. Comparison of the pre- and post-lockdown data shows that water parameters such as turbidity, nutrient concentration and microbial levels have come down from pre- to post-lockdown period, and parameters such as dissolved oxygen levels, phytoplankton and fish densities have improved. The concentration of macroplastics has also dropped from the range of 138 ± 4.12 and 616 ± 12.48 items/100 m2 to 63 ± 3.92 and 347 ± 8.06 items/100 m2. Fish density in the reef areas has increased from 406 no. 250 m−2 to 510 no. 250 m−2. The study allows an insight into the benefits of effective enforcement of various eco-protection regulations and proper management of the marine ecosystems to revive their health for biodiversity conservation and sustainable utilization."; "Reef fish", "covid-19", "lockdown", "plastic pollution"; ; "COVID-19 lockdown improved the health of coastal environment and enhanced the population of reef-fish"; "2023-01-08 19:24:00.526730+00:00"; a , , . ; "https://earthobservatory.nasa.gov/images/83394/parting-the-sea-to-save-venice"; ; "2023-01-08 19:58:47.516622+00:00"; "2023-01-08 19:58:48.541547+00:00"; "The natural-color Landsat images above show some of the MOSE engineering efforts that are visible above the water line near the Lido Inlet. The top image was acquired on June 20, 2000, by the Enhanced Thematic Mapper+ on Landsat 7. The second image, from the Operational Land Imager on Landsat 8, was collected on September 4, 2013. Turn on the image comparison tool to make the changes easier to see. (Note that Landsat 8 has a greater dynamic range than Landsat 7, so the Landsat 8 image is crisper the Landsat 7 image.)"; ; "Parting the Sea to Save Venice"; "2023-01-08 19:58:47.516622+00:00"; a , , . "giorgio.castellan@bo.ismar.cnr.it"; "Giorgio Castellan"; a ; "0000-0001-6084-1504" . "Simula Research Laboratory"; "annef@simula.no"; "Anne Fouilloux"; a ; "0000-0002-1784-2920" . "federica.foglini@ismar.cnr.it"; "Federica Foglini"; a ; "0000-0002-2736-0052" . "jeani@uio.no"; "Jean Iaquinta"; a ; "0000-0002-8763-1643" . "CNR-ISMAR"; "malek.belgacem@ve.ismar.cnr.it"; "Malek Belgacem"; a ; "0000-0003-0745-4155" . ; ; "https://reliance.adamplatform.eu/?dataset=69623:EU_CAMS_SURFACE_NO2_G"; ; "2023-01-08 19:40:14.176174+00:00"; "2023-01-08 19:40:15.144502+00:00"; "CAMS NITROGEN DIOXIDE"; "2022-12-27T23:00:00Z"; "NO2"; ; "CAMS European air quality forecasts: NO2"; "2023-01-08 19:40:14.176174+00:00"; "2018-07-12T00:00:00Z"; ; a , , ; "Float32"; "mailto:govoni@meeo.it"; "[1.354510459350422e-07]"; "[0.0]" . ; ; "https://reliance.adamplatform.eu/?dataset=69625:EU_CAMS_SURFACE_O3_G"; ; "2023-01-08 19:41:17.789149+00:00"; "2023-01-08 19:41:19.230215+00:00"; "CAMS OZONE"; "2022-12-27T23:00:00Z"; "O3"; ; "CAMS European air quality forecasts: O3"; "2023-01-08 19:41:17.789149+00:00"; "2018-07-12T00:00:00Z"; ; a , , ; "Float32"; "mailto:govoni@meeo.it"; "[2.2007016298175586e-07]"; "[0.0]" . ; ; "https://reliance.adamplatform.eu/?dataset=69627:EU_CAMS_SURFACE_PM25_G"; ; "2023-01-08 19:42:25.690080+00:00"; "2023-01-08 19:42:26.703885+00:00"; "CAMS SURFACE PARTICULATE METTER D<2.5"; "2022-12-27T23:00:00Z"; "PM2.5"; ; "CAMS European air quality forecasts: PM25"; "2023-01-08 19:42:25.690080+00:00"; "2018-07-12T00:00:00Z"; ; a , , ; "Float32"; "mailto:govoni@meeo.it"; "[709.8012084960938]"; "[0.0]" . "post@simula.no"; "00vn06n10"; "Simula Research Laboratory"; a , . ; "https://w3id.org/ro-id/0869e396-3733-4aff-8fb2-94c8937b28aa"; ; "2023-01-08 19:15:20.212877+00:00"; "2023-01-08 19:15:21.730870+00:00"; "This is a case study of snapshot project http://snapshot.cnr.it/ to investigate the lockdown impact on the water quality at a selected site in the northern Adriatic Sea, precisely in Northern Adriatic Sea, the case of the Gulf of Venice using Machine Learning model."; ; "Snapshot 2021 study case: Lockdown impacts on the Northern Adriatic Sea at selected site: AcquaAlta Platform Water quality"; "2023-01-08 19:15:20.212877+00:00"; a , , . ; "https://w3id.org/ro-id/53aa90bf-c593-4e6d-923f-d4711ac4b0e1"; ; "2023-01-08 19:14:03.311972+00:00"; "2023-01-08 19:14:05.880278+00:00"; "The COVID-19 pandemic has led to significant reductions in economic activity, especially during lockdowns. Several studies has shown that the concentration of nitrogen dioxyde and particulate matter levels have reduced during lockdown events. Reductions in transportation sector emissions are most likely largely responsible for the NO2 anomalies. In this study, we analyze the impact of lockdown events on the air quality using data from Copernicus Atmosphere Monitoring Service over Europe and at selected locations."; ; "Impact of the Covid-19 Lockdown on Air quality over Europe"; "2023-01-08 19:14:03.311972+00:00"; a , , . ; "https://w3id.org/ro-id/53aa90bf-c593-4e6d-923f-d4711ac4b0e1/resources/2a2b6f01-be2e-414e-af08-d882aa995a71"; ; "2023-01-08 19:21:48.221333+00:00"; "2023-01-08 19:21:49.326505+00:00"; "In order to fight against the spread of COVID-19, the most hard-hit countries in the spring of 2020 implemented different lockdown strategies. To assess the impact of the COVID-19 pandemic lockdown on air quality worldwide, Air Quality Index (AQI) data was used to estimate the change in air quality in 20 major cities on six continents. Our results show significant declines of AQI in NO2, SO2, CO, PM2.5 and PM10 in most cities, mainly due to the reduction of transportation, industry and commercial activities during lockdown. This work shows the reduction of primary pollutants, especially NO2, is mainly due to lockdown policies. However, preexisting local environmental policy regulations also contributed to declining NO2, SO2 and PM2.5 emissions, especially in Asian countries. In addition, higher rainfall during the lockdown period could cause decline of PM2.5, especially in Johannesburg. By contrast, the changes of AQI in ground-level O3 were not significant in most of cities, as meteorological variability and ratio of VOC/NOx are key factors in ground-level O3 formation."; ; "Impact of the COVID-19 Pandemic Lockdown on Air Quality Pollution in 20 Major cities around the World"; "2023-01-08 19:21:48.221333+00:00"; a , , . "POLYGON ((12.094116155058147 45.146856282945706, 12.094116155058147 45.62908481204897, 12.816467229276897 45.62908481204897, 12.816467229276897 45.146856282945706, 12.094116155058147 45.146856282945706))"; "12.094116155058147 45.146856282945706, 12.094116155058147 45.62908481204897, 12.816467229276897 45.62908481204897, 12.816467229276897 45.146856282945706, 12.094116155058147 45.146856282945706"; a . ; "6a2207a2-9571-4b63-8cbf-02436218ad41"; "POLYGON ((-25.000012 29.999997, 44.999988 29.999997, 44.999988 71.999997, -25.000012 71.999997, -25.000012 29.999997))"; a . ; "78e02fc4-e1a5-4bcc-8097-d030d4353728"; "POLYGON ((-25.000012 29.999997, 44.999988 29.999997, 44.999988 71.999997, -25.000012 71.999997, -25.000012 29.999997))"; a . ; "96442f49-532b-42c9-bab7-0af0819a361a"; "POLYGON ((-25.000012 29.999997, 44.999988 29.999997, 44.999988 71.999997, -25.000012 71.999997, -25.000012 29.999997))"; a . ; "9d821770-8710-4046-a4bd-0f9a99c21ce1"; "POLYGON ((12.094116155058147 45.146856282945706, 12.094116155058147 45.62908481204897, 12.816467229276897 45.62908481204897, 12.816467229276897 45.146856282945706, 12.094116155058147 45.146856282945706))"; a . "POLYGON ((-25.000012 29.999997, 44.999988 29.999997, 44.999988 71.999997, -25.000012 71.999997, -25.000012 29.999997))"; "-25.000012 29.999997, 44.999988 29.999997, 44.999988 71.999997, -25.000012 71.999997, -25.000012 29.999997"; a . "POLYGON ((-25.000012 29.999997, 44.999988 29.999997, 44.999988 71.999997, -25.000012 71.999997, -25.000012 29.999997))"; "-25.000012 29.999997, 44.999988 29.999997, 44.999988 71.999997, -25.000012 71.999997, -25.000012 29.999997"; a . "POLYGON ((-25.000012 29.999997, 44.999988 29.999997, 44.999988 71.999997, -25.000012 71.999997, -25.000012 29.999997))"; "-25.000012 29.999997, 44.999988 29.999997, 44.999988 71.999997, -25.000012 71.999997, -25.000012 29.999997"; a . ; , , ; , , ; ; "378903"^^xsd:integer; "https://api.rohub.org/api/ros/998dccd6-7192-4d88-af39-6018c71e6bdf/crate/download/"; , , ; ; ; "2023-01-08 18:47:51.996769+00:00"; "2025-10-18 10:08:45.203704+00:00"; "2023-01-08 18:47:51.996769+00:00"; "In this study, we focusing on understanding changes in air and water quality during the Covid-19 lockdown in the Venice Lagoon. We are re-using existing Research Objects, and in particular Jupyter Notebooks that were created in previous studies."; "application/ld+json"; , , , , ; "https://w3id.org/ro-id/998dccd6-7192-4d88-af39-6018c71e6bdf"; "air", "water"; ; "Jupyter Notebook"; "Changes in air and water quality during the Covid-19 Lockdown in the Venice Lagoon"; ; , ; "MANUAL"; , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ; ; a , , , ; "https://w3id.org/ro/terms/earth-science#ExecutableResearchObjectTemplate"; "Fouilloux, Anne, Federica Foglini, Giorgio Castellan, Malek Belgacem, Jean Iaquinta, and Simone Mantovani. \"Changes in air and water quality during the Covid-19 Lockdown in the Venice Lagoon.\" ROHub. Jan 08 ,2023. https://w3id.org/ro-id/998dccd6-7192-4d88-af39-6018c71e6bdf." . "POLYGON ((-25.000012 29.999997, 44.999988 29.999997, 44.999988 71.999997, -25.000012 71.999997, -25.000012 29.999997))"; a , . a . "POLYGON ((12.094116155058147 45.146856282945706, 12.094116155058147 45.62908481204897, 12.816467229276897 45.62908481204897, 12.816467229276897 45.146856282945706, 12.094116155058147 45.146856282945706))"; a , . a . "POLYGON ((-25.000012 29.999997, 44.999988 29.999997, 44.999988 71.999997, -25.000012 71.999997, -25.000012 29.999997))"; a , . "POLYGON ((-25.000012 29.999997, 44.999988 29.999997, 44.999988 71.999997, -25.000012 71.999997, -25.000012 29.999997))"; a , . , , , , , , , ; "input"; a , . , , ; "biblio"; a , . , , , ; "output"; a , . ; "tool"; a , . a . a . ; "384679"^^xsd:integer; "https://api.rohub.org/api/resources/084b7991-70e0-48c1-af37-5bf6e1e21196/download/"; ; "2023-12-06 19:20:08.956858+00:00"; "2023-12-06 19:29:13.115843+00:00"; """## Description Jupyter Notebook to analyse the changes in NO2 during the Covid-19 Lockdown in the Venice Lagoon. Datasets are from Copernicus Atmosphere Monitoring Forecasts and in-situ measurement for water quality."""; ; "Impact of the Covid-19 Lockdown on Air and Water quality in the Venice Lagoon.ipynb"; "2023-12-06 19:20:08.956858+00:00"; a , , . a . ; "46709"^^xsd:integer; "https://api.rohub.org/api/resources/2d7f45dc-c147-483a-83c4-356e2f69068b/download/"; ; "2023-12-06 19:46:49.229830+00:00"; "2023-12-06 19:46:51.083430+00:00"; "image/png"; ; "water-quality-Venice_lagoon_2010-2020.png"; "2023-12-06 19:46:49.229830+00:00"; a , , . a . ; "46709"^^xsd:integer; "https://api.rohub.org/api/resources/49c08d71-ef52-4ae1-9ddb-cd43bc204d84/download/"; ; "2023-01-08 19:35:05.569853+00:00"; "2023-01-08 19:35:10.195993+00:00"; "Dataset shows monthly values and error bars."; "image/png"; ; "Water quality in the Venice Lagoon between 2010 and 2020."; "2023-01-08 19:35:05.569853+00:00"; a , , . a . ; "162243"^^xsd:integer; "https://api.rohub.org/api/resources/885820ec-21c6-4045-96cd-716e2ae42102/download/"; ; "2023-12-06 19:45:26.207657+00:00"; "2023-12-06 19:46:05.707407+00:00"; "Compare air quality and water quality in the Venice Lagoon for two different dates."; "image/png"; ; "Air quality and Water quality in the Venice Lagoon between 2010 and 2020.png"; "2023-12-06 19:45:26.207657+00:00"; a , , . a . ; "63516"^^xsd:integer; "https://api.rohub.org/api/resources/9777f9c8-388f-49e7-b027-a1dc933c2398/download/"; ; "2023-01-08 20:22:56.960407+00:00"; "2023-01-08 20:23:20.887428+00:00"; "Bar plot showing NO2 averaged between March and June for 2019 and 2020. The goal is to compare values before and during the covid-19 lockdown."; "NO2"; ; "NO2 Copernicus Air Quality forecasts for March-June 2019-2020"; "2023-01-08 20:22:56.960407+00:00"; a , , . a . a . ; "39986"^^xsd:integer; "https://api.rohub.org/api/resources/da17f3c5-cc88-46fe-bd6e-3e7c278f8df0/download/"; ; "2023-01-08 20:25:23.565475+00:00"; "2023-01-08 20:25:50.602797+00:00"; "The goal is to compare values of NO2 water quality before and during the covid-19 lockdown."; "NO2"; ; "NO2 water quality in the Venice lagoon between March-June 2019 and 2020."; "2023-01-08 20:25:23.565475+00:00"; a , , . dct:conformsTo ; ; a . ; "https://w3id.org/ro-id/c2c64bf9-7625-4442-9ca9-dcd978b1d38b"; ; "2023-01-08 19:19:35.675216+00:00"; "2023-01-08 19:19:37.507930+00:00"; "Integration of data on Air and Water quality in the Venice Lagoon to assess the impact of the Covid-19 Lockdown"; ; "Impact of the Covid-19 Lockdown on Air and Water quality in the Venice Lagoon"; "2023-01-08 19:19:35.675216+00:00"; a , , . "False"; ; "2023-02-19 13:23:07.855375+00:00"; ; a , . "atmospheric sciences"; a ; "54.63797800317049"; "0.9944986701011658" . "Italy"; a ; . "air pollution"; a ; "3.5785288270377733"; "5.4" . "Australia"; a ; . "study"; a ; "5.699138502319417"; "8.6" . "London"; a ; . "world s major cities"; a ; "1.7218543046357615"; "2.6" . "São Paulo"; a ; . "major city"; a ; "3.90987408880053"; "5.9" . "Tokyo"; a ; . "air quality data"; a ; "1.9205298013245033"; "2.9" . "software"; a ; "8.673469387755102"; "1.7" . "Beijing"; a ; . "meteorology"; a ; "14.795918367346937"; "2.9" . """Keywords: COVID ; AQI; lockdown policy; major cities; NO ; PM . ; ozone ."""; a ; "2.6800670016750416"; "3.2" . "Sydney"; a ; . "Venice Venice Lagoon"; a ; "31.192052980132452"; "47.1" . "Thus, in order to provide a more comprehensive analysis ofthe impact of lockdowns on all critical air pollutants during the entire lockdown period and to assessthe impact of different lockdown strategies on air pollution, AQI in major cities worldwide wasexamined."; a ; "4.857621440536013"; "5.8" . "World Health Organization"; a ; . "Turkey"; a ; . "medicine"; a ; "14.795918367346937"; "2.9" . "computer science"; a ; "19.387755102040813"; "3.8" . "air quality index"; a ; "3.8847664775207336"; "8.9" . "social and information sciences"; a ; "68.58537549936264"; "0.658052384853363" . "Los Angeles"; a ; "3.186381492797905"; "7.3" . "research"; a ; "8.681245858184228"; "13.1" . "toan air quality index"; a ; "1.9867549668874172"; "3.0" . "study"; a ; "3.753819292885203"; "8.6" . "Seoul"; a ; . "World Meteorological Organization"; a ; . "earth sciences"; a ; "54.63797800317049"; "0.9944986701011658" . "pollutant discharge"; a ; "1.5894039735099337"; "2.4" . "Mar"; a ; "5.301524188204109"; "8.0" . "ecology"; a ; "42.3469387755102"; "8.3" . "Africa"; a ; . "Paris"; a ; . "big city"; a ; "5.019642077695329"; "11.5" . "International Agency for Research on Cancer"; a ; . "Iran"; a ; . "Mexico City"; a ; . "Mexico City Mexico Mar"; a ; "3.1788079470198674"; "4.8" . "research"; a ; "5.063291139240507"; "11.6" . "pollutant"; a ; "3.1146454605699136"; "4.7" . "Japan"; a ; . "Moscow"; a ; . "Venice"; a ; "7.333042339589699"; "16.8" . "Lima"; a ; . "Germany"; a ; . "The World air quality project"; a ; "2.384105960264901"; "3.6" . "Tehran"; a ; . "United Kingdom"; a ; . "South Korea"; a ; . "geophysics"; a ; "31.414624500637366"; "0.3014121949672699" . "lockdown"; a ; "2.6507620941020544"; "4.0" . "Madrid"; a ; . "air quality"; a ; "5.019642077695329"; "11.5" . "Sao Paulo Brazil Mar"; a ; "1.6556291390728477"; "2.5" . "February"; a ; "2.3134002618943694"; "5.3" . "Johannesburg"; a ; . "Venice"; a ; . "India"; a ; . "covid"; a ; "2.253147779986746"; "3.4" . "World s air pollution"; a ; "2.119205298013245"; "3.2" . "research object"; a ; "21.52317880794702"; "32.5" . "Wuhan"; a ; . "water quality"; a ; "15.904572564612325"; "24.0" . "pollution"; a ; "2.6625927542557837"; "6.1" . "We are re-using existing Research Objects, and in particular Jupyter Notebooks that were created in previous studies."; a ; "19.011725293132326"; "22.7" . "geology"; a ; "45.36202199682951"; "0.8256614208221436" . "To assess the impact of the COVID pandemiclockdown on air quality worldwide, Air Quality Index (AQI) data was used to estimate the changein air quality in major cities on six continents."; a ; "8.793969849246231"; "10.5" . "Venice Lagoon"; a ; "10.603048376408218"; "16.0" . "data"; a ; "2.793539938891314"; "6.4" . "Air pollution"; a ; "Environment/Environmental pollution/Air pollution" . "Changes in air and water quality during the Covid-19 Lockdown in the Venice Lagoon."; a ; "21.1892797319933"; "25.3" . "aim"; a ; "3.7101702313400264"; "8.5" . "Claremont"; a ; . "May"; a ; "2.618943692710607"; "6.0" . "geosciences"; a ; "31.414624500637366"; "0.3014121949672699" . "Environmental pollution"; a ; "Environment/Environmental pollution" . "lockdown"; a ; "7.289393278044522"; "16.7" . "air quality"; a ; "3.7773359840954273"; "5.7" . "Asia"; a ; . "South America"; a ; . "Peru"; a ; . "Madrid Spain Mar May TotalOutdoorphysicalexercise"; a ; "3.576158940397351"; "5.4" . "Jupyter Notebooks"; a ; "6.096752816434724"; "9.2" . "Venice"; a ; "7.090788601722995"; "10.7" . "Tehran Iran Mar Apr TotalShops"; a ; "2.185430463576159"; "3.3" . "understanding"; a ; "2.5316455696202533"; "5.8" . "AQI"; a ; "3.7773359840954273"; "5.7" . "availablefor Los Angeles"; a ; "3.443708609271523"; "5.2" . "New York"; a ; "3.4482758620689657"; "7.9" . "In this study, we focusing on understanding changes in air and water quality during the Covid-19 lockdown in the Venice Lagoon."; a ; "43.46733668341708"; "51.9" . "water quality"; a ; "9.602793539938892"; "22.0" . "France"; a ; . "lockdown data"; a ; "1.5231788079470197"; "2.3" . "Delhi"; a ; . "Weather"; a ; "Weather" . "Rome"; a ; . "changes in air and water quality"; a ; "10.927152317880795"; "16.5" . "lockdown lockdown Policy"; a ; "2.052980132450331"; "3.1" . "Los Angeles"; a ; "2.8495692511597084"; "4.3" . "Berlin"; a ; . "object"; a ; "6.428098078197481"; "9.7" . "Mexico"; a ; . "New York"; a ; . "earth sciences"; a ; "45.36202199682951"; "0.8256614208221436" . "Los Angeles"; a ; . "lockdown strategy"; a ; "1.390728476821192"; "2.1" . "New York"; a ; "3.180914512922465"; "4.8" . "Environmental Protection Agency"; a ; . "Russia"; a ; . "Los Angeles U.S.A Mar"; a ; "2.119205298013245"; "3.2" . "Istanbul"; a ; . "Mexico City"; a ; "3.3173286774334354"; "7.6" . "Antarctica"; a ; . "Europe"; a ; . "China"; a ; . "Spain"; a ; . "data"; a ; "2.1206096752816435"; "3.2" . "Mexico City"; a ; "2.982107355864811"; "4.5" . "covid pandemic lockdown"; a ; "1.8543046357615893"; "2.8" . "March"; a ; "5.674378000872982"; "13.0" . "United States of America"; a ; . "air pollution"; a ; "4.539502400698385"; "10.4" . "Brazil"; a ; . "South Africa"; a ; . "documentation and information science"; a ; "68.58537549936264"; "0.658052384853363" . ; "https://zenodo.org/record/7513765/files/NO2_EUROPE_ADAMAPI2019-03-01_2021-06-30.nc"; ; "2023-01-08 19:38:36.937507+00:00"; "2023-01-08 19:38:38.878326+00:00"; "NO2 CAMS over Europe March-June 2019, 2020 and 2021 extracted from ADAM data cube."; "application/x-netcdf"; "NO2"; ; "NO2 CAMS over Europe March-June 2019, 2020 and 2021"; "2023-01-08 19:38:36.937507+00:00"; a , , . "Anne Fouilloux"; a . "mantovani@meeo.it"; "Simone Mantovani"; a . "Raul Palma"; a . "service-account-enrichment"; a . } sub:provenance { sub:assertion prov:wasDerivedFrom . } sub:pubinfo { this: dct:created "2025-11-11T16:20:32.315+01:00"^^xsd:dateTime; npx:introduces ; a npx:RoCrateNanopub; rdfs:label "Changes in air and water quality during the Covid-19 Lockdown in the Venice Lagoon" . sub:sig npx:hasAlgorithm "RSA"; npx:hasPublicKey "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA4pPaESKwmC6l37P86K6TNLq6yeQtc7m9CvcqauLs/1FC0viHvQnFBgxj0a+loPDv/Egwe6OqFpa0iW9Ypnyz9YPoh+pxbRXonbuMOb+8Ry9hXZ+TEKfWjhjVDGEaClwfRwglh2HI/xfV4CD9AgvDOEoZQiyta8a90PYwJ3G6e70oCHTn61+OWTkI9KRYHOYgg3btdy2Z7q/30PTFawb2ZT5aIfIJYobUYv2a7yhtcqWCHZeKv0bxGnRjTFNx1rscBMlLJSzvRtpQc1cCRVEPFZHo1adaXCI9tGvn4cxeNQ96y8dxkN1XhpaJairde+23MDzf42Oe97KG2HYzKiyVnQIDAQAB"; npx:hasSignature "dKbHogn1y0e4qLODo3YY3a7qGtylm2oTBWiwHu5ZktqiQTa8OLHYIrdjQcUIpZ63TIH4Vws+sS/pEdug3UidTwuDCK6w+mxHRLIt6MDCLB3bcXhXQSJx5F073BrWB9c8ISKQhIyYtVirs7xdTGBCw2iexc9PjBxGa4pGdeoyyc9FSbTxL/5+ZKLHmyrTuEtBeu3C8GtvxdCKLpmhUDtjl1roZUUFbYNCVKdydBU4XVv33IWUgbl75HlzzD1VxUrk+cDNQ+lwVWvR30HvMY6e+AS1Yw3pYurAzBvrNCmn+OnbbyXxhNDdh0fn1x5YHh2mR9BEp1WB3gH+rnvC4Cnf+g=="; npx:hasSignatureTarget this:; npx:signedBy . }