@prefix this: <https://w3id.org/np/RA3Wt6jY7rpChWyGpQaqC0u1t44i4Bhd3PDIsyyA9uyOM> .
@prefix sub: <https://w3id.org/np/RA3Wt6jY7rpChWyGpQaqC0u1t44i4Bhd3PDIsyyA9uyOM/> .
@prefix np: <http://www.nanopub.org/nschema#> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix nt: <https://w3id.org/np/o/ntemplate/> .
@prefix npx: <http://purl.org/nanopub/x/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix orcid: <https://orcid.org/> .
@prefix prov: <http://www.w3.org/ns/prov#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
sub:Head {
  this: np:hasAssertion sub:assertion ;
    np:hasProvenance sub:provenance ;
    np:hasPublicationInfo sub:pubinfo ;
    a np:Nanopublication .
}
sub:assertion {
  <https://w3id.org/np/RAfZfE1gbUtc35W7xT12XTO0ptZwycN2-jj7Jow6COAoQ/research-question> dct:audience "Multi-source EO datasets requiring integration for AI/ML applications" ;
    dct:description "Can DGGS provide an AI-ready spatial framework that eliminates the need for costly harmonization?" ;
    dct:relation "Traditional harmonization workflows (reprojection, resampling, vector-raster conversion)" ;
    dct:subject "DGGS-based spatial indexing as a harmonization framework" ;
    dct:title "DGGS as an AI-Ready Framework for Multi-Source Earth Observation Data Integration" ;
    dct:type <https://w3id.org/np/RAfZfE1gbUtc35W7xT12XTO0ptZwycN2-jj7Jow6COAoQ/effectiveness> ;
    <http://schema.org/expectedResult> "Preprocessing time/cost, data alignment accuracy, AI model performance, reproducibility across research groups" ;
    rdfs:comment "Multi-source Earth observation data cannot be directly fed to AI algorithms without costly spatial harmonization — including reprojection, resampling, and vector-raster conversion. This preprocessing bottleneck limits the scalability and reproducibility of machine learning workflows in EO. DGGS offers a potential solution by providing a standardized spatial index where heterogeneous datasets become directly associable via zone IDs, potentially eliminating traditional harmonization steps. However, no systematic synthesis exists evaluating DGGS effectiveness specifically for AI-ready data preparation. This review will assess whether DGGS can serve as a scalable, interoperable framework that enables direct ingestion of multi-source EO data into AI pipelines." .
}
sub:provenance {
  sub:assertion prov:wasAttributedTo orcid:0000-0002-1784-2920 .
}
sub:pubinfo {
  orcid:0000-0002-1784-2920 foaf:name "Anne Fouilloux" .
  this: dct:created "2026-01-25T09:24:13.269Z"^^xsd:dateTime ;
    dct:creator orcid:0000-0002-1784-2920 ;
    dct:license <https://creativecommons.org/licenses/by/4.0/> ;
    npx:wasCreatedAt <https://nanodash.knowledgepixels.com/> ;
    rdfs:label "PICO Research Question: DGGS as an AI-Ready Framework for Multi-Source Earth Observation Data Integration" ;
    nt:wasCreatedFromProvenanceTemplate <https://w3id.org/np/RA7lSq6MuK_TIC6JMSHvLtee3lpLoZDOqLJCLXevnrPoU> ;
    nt:wasCreatedFromPubinfoTemplate <https://w3id.org/np/RA0J4vUn_dekg-U1kK3AOEt02p9mT2WO03uGxLDec1jLw> , <https://w3id.org/np/RAukAcWHRDlkqxk7H2XNSegc1WnHI569INvNr-xdptDGI> ;
    nt:wasCreatedFromTemplate <https://w3id.org/np/RAfZfE1gbUtc35W7xT12XTO0ptZwycN2-jj7Jow6COAoQ> .
  sub:sig npx:hasAlgorithm "RSA" ;
    npx:hasPublicKey "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDWv2pJnmDsBOq8OlT1aSvYXSuWT34WOp4FYqEzdnn2F0kqzcFevBqWGZDxJWC0lqCrDEuNfp2QFyPe/+nES9dlHGYIhqPi68fwK6ZiNUotRFxXou+rjFznVvUxtCL8Ede79EBHwWN61QtwSIcU12bLoZsNPFlqQASQ93BJuKlihwIDAQAB" ;
    npx:hasSignature "tkFXjfc0VSB8gfvQ7a30qSMaHyAvJU5d/CloirG8k4gfDCvDPxQC7Tw4iTp6oB6ZRcp2X9y6hKD1HSzb9FyEdRnJgDIbzNxRKfjQNtd3XocEkAZE4fkgXttfNqa1xKtRFoJUhaBUPBUSAvmR/tLQGVvw/KrOQYpMY0LnDoxLOcQ=" ;
    npx:hasSignatureTarget this: ;
    npx:signedBy orcid:0000-0002-1784-2920 .
}