@prefix this: . @prefix sub: . @prefix np: . @prefix dct: . @prefix rdf: . @prefix nt: . @prefix npx: . @prefix xsd: . @prefix rdfs: . @prefix orcid: . @prefix prov: . @prefix foaf: . sub:Head { this: np:hasAssertion sub:assertion; np:hasProvenance sub:provenance; np:hasPublicationInfo sub:pubinfo; a np:Nanopublication . } sub:assertion { dct:abstract "Symbolic approaches to artificial intelligence represent things within a domain of knowledge through physical symbols, combine symbols into symbol ex- pressions, and manipulate symbols and symbol expressionsNN through inference processes. While a large part of Data Science relies on statistics and applies statisti- cal approaches to artificial intelligence, there is an increasing potential for success- fully applying symbolic approaches as well. Symbolic representations and sym- bolic inference are close to human cognitive representations and therefore compre- hensible and interpretable; they are widely used to represent data and metadata, and their specific semantic content must be taken into account for analysis of such in- formation; and human communication largely relies on symbols, making symbolic representations a crucial part in the analysis of natural language. Here we discuss the role symbolic representations and inference can play in Data Science, high- light the research challenges from the perspective of the data scientist, and argue that symbolic methods should become a crucial component of the data scientists’ toolbox."; dct:date "2017-04-10"; dct:title "Data Science and Symbolic AI: synergies, challenges and opportunities"; a , ; . orcid:0000-0001-8149-5890 ; "robert.hoehndorf@kaust.edu.sa"; foaf:name "Robert Hoehndorf" . orcid:0000-0003-0169-8159 ; foaf:name "Núria Queralt-Rosinach" . foaf:name "Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia. Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia" . foaf:name "Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, USA" . sub:author-list rdf:_1 orcid:0000-0001-8149-5890 . sub:author-list__1 rdf:_2 orcid:0000-0003-0169-8159 . } sub:provenance { sub:assertion prov:wasAttributedTo orcid:0000-0001-8149-5890, orcid:0000-0003-0169-8159 . } sub:pubinfo { orcid:0000-0001-8149-5890 foaf:name "Robert Hoehndorf" . orcid:0000-0002-1267-0234 foaf:name "Tobias Kuhn" . orcid:0000-0003-0169-8159 foaf:name "Núria Queralt-Rosinach" . this: dct:created "2025-05-26T10:11:16.457Z"^^xsd:dateTime; dct:creator orcid:0000-0002-1267-0234; dct:license ; npx:hasNanopubType ; npx:introduces ; npx:wasCreatedAt ; sub:author-list; rdfs:label "Preprint: Data Science and Symbolic AI: synergies, challenges and opportunities"; nt:wasCreatedFromProvenanceTemplate ; nt:wasCreatedFromPubinfoTemplate , , , ; nt:wasCreatedFromTemplate . sub:author-list rdf:_1 orcid:0000-0001-8149-5890; rdf:_2 orcid:0000-0003-0169-8159 . sub:sig npx:hasAlgorithm "RSA"; npx:hasPublicKey "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQD4Wj537OijfOWVtsHMznuXKISqBhtGDQZfdO6pbb4hg9EHMcUFGTLbWaPrP783PHv8HMAAPjvEkHLaOHMIknqhaIa5236lfBO3r+ljVdYBElBcLvROmwG+ZGtmPNZf7lMhI15xf5TfoaSa84AFRd5J2EXekK6PhaFQhRm1IpSYtwIDAQAB"; npx:hasSignature "S3Pf7DoAm7J/m7GOGcFvqBYZhytCuW1kzfklTUe74Lh5mKqJ5mKnuRt0S3xspsioltqxA54Pquvd7sZ5pko02hiqt9sdEwKBT26XTmAt0f1O6yHttM3f/mOtNKFOD8xaFa0MtBps6TWKpOVvTR7t+ArRsUpNb8o6Fw6qn512lzI="; npx:hasSignatureTarget this:; npx:signedBy orcid:0000-0002-1267-0234 . }