@prefix this: . @prefix sub: . @prefix np: . @prefix dct: . @prefix xsd: . @prefix rdfs: . @prefix prov: . @prefix npx: . sub:Head { this: np:hasAssertion sub:assertion; np:hasProvenance sub:provenance; np:hasPublicationInfo sub:pubinfo; a np:Nanopublication . } sub:assertion { ""; "Applied sciences"; a . ""; "Earth observation"; a . "10.13039/501100007601"; "Horizon 2020"; a . a . ; "10.13039/501100000780::101017529"; "Copernicus - eoSC AnaLytics Engine"; "Copernicus - eoSC AnaLytics Engine"; a . "influence"; a ; "13.210702341137125"; "7.9" . "Climate change"; a ; "Environment/Climate change" . "Natural gas"; a ; "Economy, business and finance/Economic sector/Energy and resource/Natural gas" . "pipeline"; a ; "3.680336487907466"; "3.5" . "wetland"; a ; "19.768664563617246"; "18.8" . "heat"; a ; "4.73186119873817"; "4.5" . "driver"; a ; "3.680336487907466"; "3.5" . "ecosystem"; a ; "7.886435331230285"; "7.5" . "influence"; a ; "9.35856992639327"; "8.9" . "monitor wetland"; a ; "12.298387096774194"; "6.1" . "Methane is around 25 times as powerful in trapping heat in the atmosphere, but because it does not stay in the atmosphere as long, it more has a short-term influence on the rate of climate change."; a ; "31.626506024096383"; "21.0" . "Ecosystem"; a ; "Environment/Nature/Ecosystem" . "geophysics"; a ; "100.0"; "0.33742621541023254" . "climate change"; a ; "4.942166140904312"; "4.7" . "environmental sciences"; a ; "100.0"; "0.8669049143791199" . "role"; a ; "4.100946372239748"; "3.9" . "methane"; a ; "10.830704521556257"; "10.3" . "service-account-enrichment"; a . , ; , ; "3523184"^^xsd:integer; "https://api.rohub.org/api/ros/7435ba71-48f2-4475-999e-cd818cc941ce/crate/download/"; ; "2023-07-12 07:20:55.783495+00:00"; "2025-03-05 00:50:04.115964+00:00"; "2023-07-12 07:20:55.783495+00:00"; "With this pipeline we aim to provide users with the ability to train spatiotemporally robust machine learning models to detect and monitor wetlands and thus assessing their state over time. Wetlands play a vital role in the ecosystem, but also have critical influence on methane emissions. Methane is around 25 times as powerful in trapping heat in the atmosphere, but because it does not stay in the atmosphere as long, it more has a short-term influence on the rate of climate change. See also this news release by NOAA for more details. Wetlands have been one of the major drivers of methane in the atmosphere, acting as source instead of a sink while not being stable, including water stress as well as renaturation."; "application/ld+json"; ; ; , , , , , ; "https://w3id.org/ro-id/7435ba71-48f2-4475-999e-cd818cc941ce"; "C-SCALE community", "ML", "Sentinel-1", "U-Net", "Wetlands"; ; "Software"; "C-SCALE ML-Pipeline for Wetland Monitoring"; ; ; "MANUAL"; a , , , ; "https://w3id.org/ro-id/ea417351-9eaa-46d2-9f28-1386b29e4e84"; "https://w3id.org/ro-id/ee6b2adb-050f-40d3-a58b-d61d9d1c5dca"; "https://w3id.org/ro-id/0f11ff51-a3cc-4660-b494-07ea337fdec9", "https://w3id.org/ro-id/1204b2ea-09e8-4b2c-b320-0c549037d31f", "https://w3id.org/ro-id/149ad02c-46bf-4626-85b4-618202328561", "https://w3id.org/ro-id/1b3b06e4-f566-41dd-aa6d-8520145b547b", "https://w3id.org/ro-id/25454a91-2318-4a9a-bbd6-44957fab8fbe", "https://w3id.org/ro-id/34c68b72-e602-49ab-b744-5407cb3fb45f", "https://w3id.org/ro-id/5e68c716-9e71-4cbe-9fde-973f153c4509", "https://w3id.org/ro-id/6e274683-0405-46e9-b8b5-edcf8f5808a5", "https://w3id.org/ro-id/71c6ff0d-d880-46e0-8757-b705271ed3e7", "https://w3id.org/ro-id/9d0f07c1-8a56-4315-a3b5-5be445233bdb", "https://w3id.org/ro-id/aa3fceb2-7088-4a0a-8851-e7755127a783", "https://w3id.org/ro-id/b2e8e4a4-ba08-41d2-af36-3a8821c9b76f", "https://w3id.org/ro-id/cf03cf16-9ef7-4e87-a67a-b01411d18b44", "https://w3id.org/ro-id/e77f5087-12f9-404c-a6f5-995c20d18ba4"; "https://w3id.org/ro-id/6ae2d99c-26e9-4b0c-9a5b-547e95f5bb63", "https://w3id.org/ro-id/76f0f04d-f2ac-4a5f-96a8-2b0fcec01630"; "https://w3id.org/ro-id/06845dd0-5b8d-4c4f-9bcf-09988d921fff", "https://w3id.org/ro-id/0bf01187-94aa-4942-b161-9277c093bf72", "https://w3id.org/ro-id/45f8b43b-cf15-4e8e-ad27-eefbc2ae593c", "https://w3id.org/ro-id/ce3f1025-ea22-4713-9f47-17d3ace9e330"; "https://w3id.org/ro-id/016ff3a9-c662-41de-bd30-423466de97da", "https://w3id.org/ro-id/8836275d-6345-4607-9c01-97fb51b6ed23", "https://w3id.org/ro-id/8c9ead17-7adf-4687-90e0-8cc68484fd53", "https://w3id.org/ro-id/957ffc67-83eb-4f6f-b942-972779a7811a", "https://w3id.org/ro-id/a47d3ab0-2d2e-4674-ab0d-0f32c2fd59a2", "https://w3id.org/ro-id/ed13b03e-0e3f-4d02-8882-7110088fc6ef", "https://w3id.org/ro-id/ef385012-542e-4fba-b2f1-98a311758dbd"; "https://w3id.org/ro-id/4aeca278-731b-4f6d-abbd-cbc46087e8ea", "https://w3id.org/ro-id/ddb1041c-9e19-4216-996a-8c86dd35bc9b"; "https://w3id.org/ro-id/3f72cedb-08a4-4655-8be3-c33ebe2c4dd3", "https://w3id.org/ro-id/7c0fee22-61a4-464b-8af7-f4e6cfd50fcd", "https://w3id.org/ro-id/8a9c2ce8-f524-4528-930e-a38f5b28bd28", "https://w3id.org/ro-id/a47f5322-3eaa-4b59-975b-54dbf3a64fb0", "https://w3id.org/ro-id/d4c9e06f-3eb4-46e0-8bc8-96baa69444e8"; "https://w3id.org/ro-id/41178b7e-25ea-4d95-8cc6-641b60b30c1f", "https://w3id.org/ro-id/9cf1d569-1b9a-41ab-af07-da20fb07cd3b", "https://w3id.org/ro-id/b1c143e8-d1cc-4393-b083-4d24cc35bb69"; "https://w3id.org/ro/terms/earth-science#WorkflowCentricResearchObjectTemplate"; "Raml, Bernhard, and Matthias Schramm. \"C-SCALE ML-Pipeline for Wetland Monitoring.\" ROHub. Jul 12 ,2023. https://w3id.org/ro-id/7435ba71-48f2-4475-999e-cd818cc941ce." . a . "components"; a , . , ; "datasets"; a , . "main"; a , . "nested"; a , . "results"; a , . , , ; "workflows"; a , . "config"; a , . "biblio"; a , . ; "inputs"; a , . ; "https://doi.org/10.48436/x8p2j-1tj74"; ; "2023-07-12 08:09:36.317532+00:00"; "2023-07-12 08:09:36.932436+00:00"; ; "Sentinel-1 Global Harmonic Parameters: A Seasonal Model for Flood Mapping and More"; "2023-07-12 08:09:36.317532+00:00"; a , , . ; "3511716"^^xsd:integer; "https://api.rohub.org/api/resources/6490541f-f772-4937-8883-095fe45f8a89/download/"; ; "2023-07-12 08:57:46.845114+00:00"; "2023-07-12 08:57:47.701695+00:00"; "image/png"; ; "wetland-header-img.png"; "2023-07-12 08:57:46.845114+00:00"; a , , . ; "https://github.com/c-scale-community/use-case-wetland-water-stress"; ; "2023-07-12 07:32:13.743088+00:00"; "2023-07-12 08:58:08.106419+00:00"; ; "GitHub repository"; "2023-07-12 07:32:13.743088+00:00"; a , , . dct:conformsTo ; ; a . "environmental science and management"; a ; "100.0"; "0.8669049143791199" . "influence on methane emissions"; a ; "10.282258064516128"; "5.1" . "methane"; a ; "15.719063545150503"; "9.4" . "drivers of methane"; a ; "32.86290322580645"; "16.3" . "atmosphere"; a ; "12.54180602006689"; "7.5" . "wetland"; a ; "28.42809364548495"; "17.0" . "Wetlands play a vital role in the ecosystem, but also have critical influence on methane emissions."; a ; "31.475903614457827"; "20.9" . "press release"; a ; "7.045215562565721"; "6.7" . "machine learning"; a ; "8.528428093645484"; "5.1" . "news release by NOAA"; a ; "11.491935483870968"; "5.7" . "rate"; a ; "3.575184016824396"; "3.4" . "With this pipeline we aim to provide users with the ability to train spatiotemporally robust machine learning models to detect and monitor wetlands and thus assessing their state over time."; a ; "36.89759036144578"; "24.5" . "atmosphere"; a ; "9.04311251314406"; "8.6" . "Wetlands"; a ; "Environment/Natural resources/Water/Wetlands" . "National Oceanic and Atmospheric Administration"; a ; "5.467928496319664"; "5.2" . "machine learning model"; a ; "33.06451612903225"; "16.4" . "geosciences"; a ; "100.0"; "0.33742621541023254" . "machine learning"; a ; "5.888538380651946"; "5.6" . "ecology"; a ; "100.0"; "12.3" . "news release"; a ; "10.200668896321071"; "6.1" . "National Oceanic and Atmospheric Administration"; a ; "https://www.wikidata.org/wiki/Q214700" . "ecosystem"; a ; "11.371237458193981"; "6.8" . "bernhard.raml@tuwien.ac.at"; "Bernhard Raml"; a . "TU Wien"; "matthias.schramm@geo.tuwien.ac.at"; "Matthias Schramm"; a . "remote.sensing@geo.tuwien.ac.at"; "TU Wien Remote Sensing"; a . } sub:provenance { sub:assertion prov:wasDerivedFrom . } sub:pubinfo { this: dct:created "2025-11-11T16:09:58.550+01:00"^^xsd:dateTime; npx:introduces ; a npx:RoCrateNanopub; rdfs:label "C-SCALE ML-Pipeline for Wetland Monitoring" . sub:sig npx:hasAlgorithm "RSA"; npx:hasPublicKey "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA4pPaESKwmC6l37P86K6TNLq6yeQtc7m9CvcqauLs/1FC0viHvQnFBgxj0a+loPDv/Egwe6OqFpa0iW9Ypnyz9YPoh+pxbRXonbuMOb+8Ry9hXZ+TEKfWjhjVDGEaClwfRwglh2HI/xfV4CD9AgvDOEoZQiyta8a90PYwJ3G6e70oCHTn61+OWTkI9KRYHOYgg3btdy2Z7q/30PTFawb2ZT5aIfIJYobUYv2a7yhtcqWCHZeKv0bxGnRjTFNx1rscBMlLJSzvRtpQc1cCRVEPFZHo1adaXCI9tGvn4cxeNQ96y8dxkN1XhpaJairde+23MDzf42Oe97KG2HYzKiyVnQIDAQAB"; npx:hasSignature "QbhKe0J9IOKqMONNpU8hYmPKCFlrtAGQ/4y+G5sX5FTXUvQwXKOVc6rssKI+3rdN3pe1y7fGcaobjdaal8dsekZwENjkyDdy6KeqKdLqrYbHtP+2gYfCE/lj7AXlRUAfXqnlmP82gq4srgXGss4hAtiU1Dll7jdDTHZdZp2FmiNTG6wpxuhRn9aEEd9jXuxdjSl5dqdQ5LwTVHwxrBrsW8CIK5r0VcsM692FwpWixrF4pNMIo5e+97lwe+Al6sG5PmW0C2MF1m2qsoIBlViWmmen0zZOCFZmg7gY4EOPJQnJCMMtFZwrJFPEJQD76G2hxM7tdZ//YKQebPX0t8h3nA=="; npx:hasSignatureTarget this:; npx:signedBy . }