@prefix this: . @prefix sub: . @prefix np: . @prefix dct: . @prefix xsd: . @prefix rdfs: . @prefix prov: . @prefix npx: . sub:Head { this: np:hasAssertion sub:assertion; np:hasProvenance sub:provenance; np:hasPublicationInfo sub:pubinfo; a np:Nanopublication . } sub:assertion { ""; "Environmental research"; a . ""; "Climatology"; a . ; "https://doi.org/10.1038/s41467-021-25257-4"; ; "2022-04-03 22:38:18.897063+00:00"; "2022-12-07 14:10:25.788634+00:00"; "Related publication of the modelling presented in the Jupyter notebook"; ; "Seasonal Arctic sea ice forecasting with probabilistic deep learning"; "2022-04-03 22:38:18.897063+00:00"; a dct:BibliographicResource, , . ; "https://doi.org/10.5281/zenodo.5516869"; ; "2022-04-03 22:38:16.031702+00:00"; "2022-12-07 14:10:25.878555+00:00"; "Contains input Dataset for IceNet's demo notebook used in the Jupyter notebook of Sea ice forecasting using IceNet"; ; "Input Dataset for IceNet's demo notebook"; "2022-04-03 22:38:16.031702+00:00"; a , , . ; "https://doi.org/10.5281/zenodo.6410246"; ; "2022-04-03 22:38:17.386248+00:00"; "2022-12-07 14:10:27.062680+00:00"; "Contains outputs, (table and figures), generated in the Jupyter notebook of Sea ice forecasting using IceNet"; ; "Outputs"; "2022-04-03 22:38:17.386248+00:00"; a , , . ; "https://doi.org/10.5285/71820e7d-c628-4e32-969f-464b7efb187c"; ; "2022-04-03 22:38:14.669821+00:00"; "2022-12-07 14:10:24.012958+00:00"; "Contains input Forecasts, neural networks, and results from the paper: 'Seasonal Arctic sea ice forecasting with probabilistic deep learning' used in the Jupyter notebook of Sea ice forecasting using IceNet"; ; "Input Forecasts, neural networks, and results from the paper: 'Seasonal Arctic sea ice forecasting with probabilistic deep learning'"; "2022-04-03 22:38:14.669821+00:00"; a , , . ; "https://github.com/Environmental-DS-Book/polar-modelling-icenet/blob/main/.lock/conda-linux-64.lock"; ; "2022-04-03 22:38:32.938456+00:00"; "2022-12-07 14:10:25.591794+00:00"; "Lock conda file for linux-64 OS of the Jupyter notebook hosted by the Environmental Data Science Book"; ; "Lock conda file for linux-64"; "2022-04-03 22:38:32.938456+00:00"; a , . ; "https://github.com/Environmental-DS-Book/polar-modelling-icenet/blob/main/.lock/conda-osx-64.lock"; ; "2022-04-03 22:38:34.714518+00:00"; "2022-12-07 14:10:31.124812+00:00"; "Lock conda file for osx-64 OS of the Jupyter notebook hosted by the Environmental Data Science Book"; ; "Lock conda file for osx-64"; "2022-04-03 22:38:34.714518+00:00"; a , . "jeani@uio.no"; "Jean Iaquinta"; a ; "0000-0002-8763-1643" . ; "https://raw.githubusercontent.com/Environmental-DS-Book/polar-modelling-icenet/main/.binder/environment.yml"; ; "2022-04-03 22:38:36.253117+00:00"; "2022-12-07 14:10:27.178785+00:00"; "Conda environment when user want to have the same libraries installed without concerns of package versions"; ; "Conda environment"; "2022-04-03 22:38:36.253117+00:00"; a , . ; "https://raw.githubusercontent.com/eds-book-gallery/ac327c3a-5264-40a2-8c6e-1e8d7c4b37ef/main/notebook.ipynb"; ; "2022-04-03 22:38:13.405158+00:00"; "2023-05-16 17:58:38.982476+00:00"; "Jupyter Notebook hosted by the Environmental Data Science Book"; ; "Jupyter notebook"; "2022-04-03 22:38:13.405158+00:00"; a , , ; . "post@simula.no"; "00vn06n10"; "Simula Research Laboratory"; a , . "01xtthb56"; "University of Oslo"; a , . ; "https://the-environmental-ds-book.netlify.app/gallery/modelling/polar-modelling-icenet/polar-modelling-icenet.html"; ; "2022-04-03 22:38:31.388108+00:00"; "2022-12-07 14:10:27.395338+00:00"; "Rendered version of the Jupyter Notebook hosted by the Environmental Data Science Book"; "text/html"; ; "Online rendered version of the Jupyter notebook"; "2022-04-03 22:38:31.388108+00:00"; a , , . a . "2022-12-07 14:10:33.478638+00:00"; ; , ; , ; "12846411"^^xsd:integer; "https://api.rohub.org/api/ros/b0a8864e-415d-42e3-972f-bb66c6d6a4d9/crate/download/"; , , ; , , ; ; "2022-04-03 22:37:45.977506+00:00"; "2025-10-18 10:49:31.245781+00:00"; "2022-04-03 22:37:45.977506+00:00"; "The research object refers to the Sea ice forecasting using IceNet notebook published in the Environmental Data Science book. Modelling approach IceNet is a probabilistic, deep learning sea ice forecasting system. The model, an ensemble of U-Net networks, learns how sea ice changes from climate simulations and observational data to forecast up to 6 months of monthly-averaged sea ice concentration maps at 25 km resolution. IceNet advances the range of accurate sea ice forecasts, outperforming a state-of-the-art dynamical model in seasonal forecasts of summer sea ice, particularly for extreme sea ice events. IceNet was implemented in Python 3.7 using TensorFlow v2.2.0. Further details can be found in the Nature Communications paper Seasonal Arctic sea ice forecasting with probabilistic deep learning."; "application/ld+json"; , , , ; "https://w3id.org/ro-id/b0a8864e-415d-42e3-972f-bb66c6d6a4d9"; "Environmental Science"; ; "Jupyter Notebook"; "Learn about IceNet, a probabilistic Deep learning for seasonal sea-ice forecasts", "Sea ice forecasting using IceNet (Jupyter Notebook) published in the Environmental Data Science book - fork"; ; ; "MANUAL"; , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ; a , , , , , ; prov:wasDerivedFrom ; "Alejandro Coca-Castro, Anne Foilloux, Tom Andersson, Nick Barlow, and Jean Iaquinta. \"Learn about IceNet, a probabilistic Deep learning for seasonal sea-ice forecasts.\" ROHub. Apr 03 ,2022. https://w3id.org/ro-id/b0a8864e-415d-42e3-972f-bb66c6d6a4d9." . a . , , , , , ; "tool"; a , . , , ; "output"; a , . ; "biblio"; a , . , ; "input"; a , . ; "659726"^^xsd:integer; "https://api.rohub.org/api/resources/3b853f3d-6613-4dd1-bcf8-d70e397586a7/download/"; ; "2022-12-07 15:21:40.547786+00:00"; "2022-12-07 15:21:42.318330+00:00"; "Figure showing the 2 meter temperature from ECMWF ERA5 (monthly mean September to November 2019)"; "image/png"; ; "ERA5-T2M"; "2022-12-07 15:21:40.547786+00:00"; a , , . a . a . ; "344731"^^xsd:integer; "https://api.rohub.org/api/resources/c6c163c4-1098-4532-a1f1-06698d37b17c/download/"; ; "2022-04-03 22:38:08.092594+00:00"; "2022-12-07 14:10:33.107828+00:00"; "image/png"; ; "Image showing interactive plot of IceNet seasonal forecasts of Artic sea ice according to four lead times and months in 2020"; "2022-04-03 22:38:08.092594+00:00"; a , , . ; "20240021"^^xsd:integer; "https://api.rohub.org/api/resources/dbcef63e-b902-49d4-8e78-d2623962fd74/download/"; ; "2022-12-07 15:23:15.811856+00:00"; "2022-12-07 15:23:18.303106+00:00"; "Derivative work created from forked Research Object. The Jupyter Notebook has been updated"; ; "icenet derivative work"; "2022-12-07 15:23:15.811856+00:00"; a , , ; . dct:conformsTo ; ; a . "Learn about IceNet, a probabilistic Deep learning for seasonal sea-ice forecasts."; a ; "32.13166144200627"; "20.5" . "the sea"; a ; "9.206349206349206"; "5.8" . "forecast"; a ; "17.77777777777778"; "11.2" . "meteorology"; a ; "46.666666666666664"; "0.7" . "notebook"; a ; "5.900621118012422"; "3.8" . "learning"; a ; "6.366459627329191"; "4.1" . "concentration map"; a ; "21.390374331550802"; "12.0" . "Philosophy"; a ; "Science and technology/Social sciences/Philosophy" . "sea ice"; a ; "29.999999999999996"; "18.9" . "forecasting system"; a ; "28.87700534759358"; "16.2" . "Literature"; a ; "Arts, culture and entertainment/Arts and entertainment/Literature" . "earth resources and remote sensing"; a ; "100.0"; "0.4388199746608734" . "forecast"; a ; "32.29813664596273"; "20.8" . "research"; a ; "6.832298136645963"; "4.4" . "Book industry"; a ; "Economy, business and finance/Economic sector/Media/Book industry" . "geosciences"; a ; "100.0"; "0.4388199746608734" . "ice"; a ; "4.813664596273291"; "3.1" . "modelling approach IceNet"; a ; "19.78609625668449"; "11.1" . "Weather forecast"; a ; "Weather/Weather forecast" . "earth sciences"; a ; "100.0"; "0.6858031153678894" . "research"; a ; "6.666666666666667"; "4.2" . "learning"; a ; "6.190476190476191"; "3.9" . "The research object refers to the Sea ice forecasting using IceNet notebook published in the Environmental Data Science book."; a ; "31.661442006269596"; "20.2" . "sea ice"; a ; "31.36645962732919"; "20.2" . "climate simulation"; a ; "6.349206349206349"; "4.0" . "Weather"; a ; "Weather" . "aim"; a ; "5.745341614906832"; "3.7" . "crime"; a ; "53.333333333333336"; "0.8" . "IceNet advances the range of accurate sea ice forecasts, outperforming a state-of-the-art dynamical model in seasonal forecasts of summer sea ice, particularly for extreme sea ice events."; a ; "36.20689655172414"; "23.1" . "sea ice events"; a ; "10.16042780748663"; "5.7" . "climate simulation"; a ; "6.6770186335403725"; "4.3" . "6 months"; a . "IceNet notebook"; a ; "19.78609625668449"; "11.1" . "IceNet"; a ; "23.80952380952381"; "15.0" . "physical geography and environmental geoscience"; a ; "100.0"; "0.6858031153678894" . "Nordic e-Infrastructure Collaboration (NeIC)"; "annefou@geo.uio.no"; "Anne Fouilloux"; a ; "0000-0002-1784-2920" . "environmental.ds.book@gmail.com"; "Environmental Data Science Book Community"; a , . "The Alan Turing Institute"; "Alejandro Coca-Castro"; a . "The Alan Turing Institute"; "Nick Barlow"; a . "he British Antarctic Survey"; "Tom Andersson"; a . "Raul Palma"; a . "service-account-enrichment"; a . } sub:provenance { sub:assertion prov:wasDerivedFrom . } sub:pubinfo { this: dct:created "2025-11-11T16:22:51.221+01:00"^^xsd:dateTime; npx:introduces ; a npx:RoCrateNanopub; rdfs:label "Learn about IceNet, a probabilistic Deep learning for seasonal sea-ice forecasts" . sub:sig npx:hasAlgorithm "RSA"; npx:hasPublicKey "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA4pPaESKwmC6l37P86K6TNLq6yeQtc7m9CvcqauLs/1FC0viHvQnFBgxj0a+loPDv/Egwe6OqFpa0iW9Ypnyz9YPoh+pxbRXonbuMOb+8Ry9hXZ+TEKfWjhjVDGEaClwfRwglh2HI/xfV4CD9AgvDOEoZQiyta8a90PYwJ3G6e70oCHTn61+OWTkI9KRYHOYgg3btdy2Z7q/30PTFawb2ZT5aIfIJYobUYv2a7yhtcqWCHZeKv0bxGnRjTFNx1rscBMlLJSzvRtpQc1cCRVEPFZHo1adaXCI9tGvn4cxeNQ96y8dxkN1XhpaJairde+23MDzf42Oe97KG2HYzKiyVnQIDAQAB"; npx:hasSignature "AVKJLOhjXjyDxNMnoAblQwy9tk38NtzZo4xfkJ1fRfpq6+UR9SOzs6nLsE/T60CFZ0TvyKP4f4pyfAiujeZOSRMbWAuZ+TmkRrIm5wY0inrT+BieIUDFBKFRTTd1vOxrNsk/M17iYPdJiJ/AJcQWhkfbZXwQ0Gath9+n8lyHqpcEDipzc0QYsuuZBfdC3WMfX292Nhfq6D6Ssd2z/3511obtrqGiVLL7srSSmD0rB4Sa0132JRSIpvErqGu4WsBU8E6WzfEFRSNid1oQTS/Jny52R7hAnA/nmZ+0aUVUMN8zBN0FxRCysHOP3cMPbRjsxbHozFE6TliA3cq0JyBBHA=="; npx:hasSignatureTarget this:; npx:signedBy . }