@prefix this: <
https://w3id.org/np/RAUhocXLI-Echf49dBq_5YcvQ4ys896ArUz3Y42yuzpv0
> .
@prefix sub: <
https://w3id.org/np/RAUhocXLI-Echf49dBq_5YcvQ4ys896ArUz3Y42yuzpv0/
> .
@prefix np: <
http://www.nanopub.org/nschema#
> .
@prefix dct: <
http://purl.org/dc/terms/
> .
@prefix nt: <
https://w3id.org/np/o/ntemplate/
> .
@prefix npx: <
http://purl.org/nanopub/x/
> .
@prefix xsd: <
http://www.w3.org/2001/XMLSchema#
> .
@prefix rdfs: <
http://www.w3.org/2000/01/rdf-schema#
> .
@prefix orcid: <
https://orcid.org/
> .
@prefix prov: <
http://www.w3.org/ns/prov#
> .
@prefix foaf: <
http://xmlns.com/foaf/0.1/
> .
sub:Head
{
this:
np:hasAssertion
sub:assertion
;
np:hasProvenance
sub:provenance
;
np:hasPublicationInfo
sub:pubinfo
;
a
np:Nanopublication
.
}
sub:assertion
{
<
https://ieeexplore.ieee.org/abstract/document/10650046
>
dct:description
"In Precision Agriculture, the utilization of management zones (MZs) that take into account within-field variability facilitates effective fertilizer management. This approach enables the optimization of nitrogen (N) rates to maximize crop yield production and enhance agronomic use efficiency. However, existing works often neglect the consideration of responsivity to fertilizer as a factor influencing MZ determination. In response to this gap, a proposed MZ clustering method is implemented based on fertilizer responsivity." ;
a
<
http://semanticscience.org/resource/SIO_001066
> ;
rdfs:label
"Counterfactual Analysis of Neural Networks Used to Create Fertilizer Management Zones" ;
rdfs:seeAlso
<
https://ieeexplore.ieee.org/abstract/document/10650046
> ;
<
https://schema.org/about
> <
http://www.wikidata.org/entity/Q740083
> .
}
sub:provenance
{
sub:assertion
prov:wasAttributedTo
orcid:0009-0008-8411-2742
.
}
sub:pubinfo
{
<
http://www.wikidata.org/entity/Q740083
>
nt:hasLabelFromApi
"precision agriculture - farming management strategy" .
orcid:0009-0008-8411-2742
foaf:name
"Emily Regalado" .
this:
dct:created
"2025-10-15T16:59:03.212Z"^^
xsd:dateTime
;
dct:creator
orcid:0009-0008-8411-2742
;
dct:license
<
https://creativecommons.org/licenses/by/4.0/
> ;
npx:hasNanopubType
<
http://semanticscience.org/resource/SIO_001066
> ;
npx:introduces
<
https://ieeexplore.ieee.org/abstract/document/10650046
> ;
npx:wasCreatedAt
<
https://nanodash.knowledgepixels.com/
> ;
nt:wasCreatedFromProvenanceTemplate
<
https://w3id.org/np/RA7lSq6MuK_TIC6JMSHvLtee3lpLoZDOqLJCLXevnrPoU
> ;
nt:wasCreatedFromPubinfoTemplate
<
https://w3id.org/np/RA0J4vUn_dekg-U1kK3AOEt02p9mT2WO03uGxLDec1jLw
> , <
https://w3id.org/np/RAukAcWHRDlkqxk7H2XNSegc1WnHI569INvNr-xdptDGI
> ;
nt:wasCreatedFromTemplate
<
https://w3id.org/np/RA_-u1WDZMlRI3wB8qu_dmae6WSz0PKEF8h6jV1tpxOIk
> .
sub:sig
npx:hasAlgorithm
"RSA" ;
npx:hasPublicKey
"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAxzr6UBGMW6c8tegz0babaledWUEQ0PLDE4tp7Iinbe2DZtAtY5JUptKYuStWDZx+QER4808P8dejNWRnBDzgthYJm/AyNSXflHSJhz2+NC+h7RylOLxbwLEQocmyKKiYxa2gT85m6ajVL2M6TnfG67nnK+K2f7iCGL6wYXRITD1q+7+5SWqBdDXIV921W4IKWaD2GJk+NRBoOqQhbsrk8Tn5XsNd7DMYVHk47oMDGbeBnrOIoRPsbBgAcoCsxxhiB9yN6Lf8EUbnlXVEDzJuZk048L1BDZL+6nkA8btTQGP2ijUFWA7rTrod3LjUDQWLZS95njjl867dtmv/znYkzwIDAQAB" ;
npx:hasSignature
"LAIviw0CGOVs4L4M/A38Th8iLIWIX/77tVWuZC5bJa0loOFzHl+4qUFIsHfcSAAboWti51qU3Y/FzZsnRWjDPzbIWAsPSrvhpoznAnQjajeghMsZHAd7PuU2b29ITE6W95I1bi3jZnl1fgVKQi3B1BD1GemJF58g43q9zEEL3sDeZpjSmOqET/IvWOdhi+QaIc4mLAiUH/5Pir2p8vJGboIexWYDotJaKIESVeM8iT4x2jWv/KM08C94ejhRfQQ+U6huKzEdUUR80XkBl7SoDPGTVFe9eRGBMf4fDF1GFY5KsNoBQfmGesz46xTHHtGk1Gz1YphDY+TbfBy4+MCjqw==" ;
npx:hasSignatureTarget
this:
;
npx:signedBy
orcid:0009-0008-8411-2742
.
}