@prefix this: . @prefix sub: . @prefix np: . @prefix dct: . @prefix xsd: . @prefix rdfs: . @prefix prov: . @prefix npx: . sub:Head { this: np:hasAssertion sub:assertion; np:hasProvenance sub:provenance; np:hasPublicationInfo sub:pubinfo; a np:Nanopublication . } sub:assertion { ""; "Oceanography"; a . ""; "Environmental research"; a . ""; "Earth observation"; a . "Environmental Data Science"; a ; "16.02002503128911"; "12.8" . "Language"; a ; "Arts, culture and entertainment/Culture/Language" . "learning"; a ; "10.540915395284328"; "7.6" . "Sentinel-2"; a ; "17.521902377972463"; "14.0" . "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book."; a ; "43.54354354354354"; "43.5" . "geology"; a ; "100.0"; "0.5625630021095276" . "research"; a ; "12.891113892365455"; "10.3" . "deep learning"; a ; "5.391658189216684"; "5.3" . "object"; a ; "11.76470588235294"; "9.4" . "Education"; a ; "Education" . "physical object"; a ; "11.511789181692096"; "8.3" . "imagery"; a ; "13.730929264909848"; "9.9" . ; "12443b91-78bc-4346-a11f-b0fdcd95656d"; "POLYGON ((-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663))"; a . "POLYGON ((-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663))"; "-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663"; a . "POLYGON ((26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471))"; "26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471"; a . ; "c56b3844-86b6-41a4-afe9-dc2c876602b5"; "POLYGON ((-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054))"; a . "POLYGON ((119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617))"; "119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617"; a . "POLYGON ((-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054))"; "-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054"; a . "service-account-enrichment"; a . ; "f3ffa95a-c079-43eb-9b0c-4c565f25ed16"; "POLYGON ((119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617))"; a . ; "f8096fc5-c05b-45cb-89db-8e86b8965796"; "POLYGON ((26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471))"; a . dct:doi "https://doi.org/10.24424/xe24-7z73"; "False"; "https://w3id.org/ro-id/b34facfa-cea8-48f5-89f6-f11ce00812a9"; "2022-10-27 21:00:20.757042+00:00"; "mailto:environmental.ds.book@gmail.com"; , , ; , ; , , , ; "386374"^^xsd:integer; "https://api.rohub.org/api/ros/59fb5813-d6c0-41b0-96a8-9ce42df766ee/crate/download/"; ; ; "2022-01-28 16:07:18.008253+00:00"; "2024-03-05 12:17:34.761343+00:00"; "2022-01-28 16:07:18.008253+00:00"; "The research object refers to the Detecting floating objects using deep learning and Sentinel-2 imagery notebook published in the Environmental Data Science book."; "application/ld+json"; , , , , ; "https://w3id.org/ro-id/59fb5813-d6c0-41b0-96a8-9ce42df766ee"; "Environmental Science"; ; "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book - snapshot", "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book"; ; "MANUAL"; "https://w3id.org/ro-id/59fb5813-d6c0-41b0-96a8-9ce42df766ee/0edc91a9-9049-4357-bad7-677880c8fd8a", "https://w3id.org/ro-id/59fb5813-d6c0-41b0-96a8-9ce42df766ee/19f9ef3f-8678-48f5-a9ac-cf364939dcda", "https://w3id.org/ro-id/59fb5813-d6c0-41b0-96a8-9ce42df766ee/4b55fad1-092b-4657-a004-aafc05499e18", "https://w3id.org/ro-id/59fb5813-d6c0-41b0-96a8-9ce42df766ee/e2eba045-3c2c-44a1-aa39-06cc232d05f9"; a , , , , ; "https://w3id.org/ro-id/9f8839d5-e262-4d95-b57f-4d59f316ce35"; "https://w3id.org/ro-id/2342daf9-02fb-4035-bef5-a319e710c5a2", "https://w3id.org/ro-id/55cc526a-a248-45fc-9692-7910bc22a992", "https://w3id.org/ro-id/59dd3c83-1e5c-46e0-9c21-9686b2f0c3b2", "https://w3id.org/ro-id/5db6fd69-c119-4fcc-8bff-63180141c240", "https://w3id.org/ro-id/70ba0f9e-e157-4923-b680-8bc4e53b1643", "https://w3id.org/ro-id/845b607f-2f9a-4ca3-9aab-078ad569d7f9", "https://w3id.org/ro-id/c5fb2dbc-a62b-4fb3-b63f-f33144373c44", "https://w3id.org/ro-id/da7e5000-3617-47a6-afd1-7458f7e332a8"; "https://w3id.org/ro-id/26ceaa39-a721-4f44-9f4d-f15cf80b04d7", "https://w3id.org/ro-id/5e62e3b4-aa91-4cc5-9410-2d74db4981c1"; "https://w3id.org/ro-id/0143574c-e42e-4db2-9657-1c5e54e4b7db", "https://w3id.org/ro-id/52b8251b-1525-40f1-bcfa-6d3e10c03c99", "https://w3id.org/ro-id/bb0d7b6d-3610-4822-98d5-040e7ce5389f", "https://w3id.org/ro-id/d935e85f-28e4-4a50-bebb-3b0267baa859"; "https://w3id.org/ro-id/00323171-d4e2-4365-8cdc-a62534c20823", "https://w3id.org/ro-id/25b1f09b-9829-41a3-b14b-571a806e908c", "https://w3id.org/ro-id/27599ec4-4868-4e55-9f92-946704b74b8e", "https://w3id.org/ro-id/3a4f3d50-343b-44a2-b701-4e49fbf0133e", "https://w3id.org/ro-id/66565014-d31a-4e9c-8e67-4e0e640a2ae7", "https://w3id.org/ro-id/92b100de-2b19-4b38-bd01-46bbdb8dfa0b", "https://w3id.org/ro-id/eca95bb5-a668-46c5-b2d5-361bbe5042f5"; "https://w3id.org/ro-id/b6bb2c0b-9a4e-4837-94b2-7e694dc41bbe", "https://w3id.org/ro-id/fe9de568-6dc1-4166-b6e9-d6d929756635"; "https://w3id.org/ro-id/3235d3f7-5d60-444c-974a-698f780075e0", "https://w3id.org/ro-id/5c32baf2-eb49-4756-a7d2-63f89f6a5b74", "https://w3id.org/ro-id/ac05057e-76c2-4307-ab5c-e692e81ac9a2", "https://w3id.org/ro-id/b73c0d99-75d5-4794-a5db-d5121848488b", "https://w3id.org/ro-id/c8fc56ea-45cb-466a-ae4a-86382a663ca3"; "https://w3id.org/ro-id/25deea62-4802-4ca4-8ef3-e56c994285c3", "https://w3id.org/ro-id/cf35ff5b-22e1-4c0b-912a-f3521111ffc6"; "Raquel Carmo, Jamila Mifdal, and Alejandro Coca-Castro. \"Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book.\" ROHub. Jan 28 ,2022. https://doi.org/10.24424/xe24-7z73." . a . ; "input"; a , . , , , , , ; "tool"; a , . , ; "biblio"; a , . ; "output"; a , . ; "https://doi.org/10.5194/isprs-annals-V-3-2021-285-2021"; ; "2022-01-28 16:07:43.339740+00:00"; "2022-10-27 21:00:10.761926+00:00"; "Publication with further details of the modelling published in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences"; ; "Towards detecting floating objects on a global scale with learned spatial features using sentinel 2"; "2022-01-28 16:07:43.339740+00:00"; a dct:BibliographicResource, , . ; "https://the-environmental-ds-book.netlify.app/gallery/modelling/ocean-modelling-litter-philab/ocean-modelling-litter-philab.html"; ; "2022-01-31 11:16:52.095424+00:00"; "2022-10-27 21:00:18.188755+00:00"; "Rendered version of the Jupyter Notebook hosted by the Environmental Data Science Book"; "text/html"; ; "Online rendered version of the Jupyter notebook"; "2022-01-31 11:16:52.095424+00:00"; a , , . ; "362051"^^xsd:integer; "https://api.rohub.org/api/resources/1c57a67a-fa2c-45cf-8029-106468a2294e/download/"; ; "2022-01-28 16:07:27.708716+00:00"; "2022-10-27 21:00:20.672095+00:00"; "Image showing the prediction of marine litter, sargassum, in Cancun, Mexico"; "image/png"; ; "Prediction of marine litter, sargassum in Cancun, Mexico"; "2022-01-28 16:07:27.708716+00:00"; a , , . ; "https://doi.org/10.5281/zenodo.5911143"; ; "2022-01-28 16:07:38.160206+00:00"; "2022-10-27 21:00:18.581833+00:00"; "Contains outputs, (predictions and interactive figure), generated in the Jupyter notebook of Detecting floating objects using deep learning and Sentinel-2 imagery"; ; "Outputs"; "2022-01-28 16:07:38.160206+00:00"; a , , . ; "https://doi.org/10.5281/zenodo.5827376"; ; "2022-01-28 16:07:34.662177+00:00"; "2022-10-27 21:00:06.699231+00:00"; "Contains input analysis-ready input images used in the Jupyter notebook of Detecting floating objects using deep learning and Sentinel-2 imagery"; ; "Input images"; "2022-01-28 16:07:34.662177+00:00"; a , , . ; "https://210507-004.oceansvirtual.com/view/content/skdwP611e3583eba2b/ecf65c2aaf278557ad05c213247d67a54196c9376a0aed8f1875681f182daeed"; ; "2022-01-28 16:07:40.875698+00:00"; "2022-10-27 21:00:18.383109+00:00"; "Related publication of the modelling published in OCEANS 2021"; ; "Detecting macro floating objects on coastal water bodies using sentinel-2 data"; "2022-01-28 16:07:40.875698+00:00"; a dct:BibliographicResource, , . ; "https://github.com/Environmental-DS-Book/ocean-modelling-litter-philab/blob/main/.lock/conda-osx-64.lock"; ; "2022-01-31 11:16:56.332731+00:00"; "2022-10-27 21:00:06.870068+00:00"; "Lock conda file for osx-64 OS of the Jupyter Book hosted by the Environmental Data Science Book"; ; "Lock conda file for osx-64"; "2022-01-31 11:16:56.332731+00:00"; a , . ; "https://github.com/Environmental-DS-Book/ocean-modelling-litter-philab/blob/main/.lock/conda-linux-64.lock"; ; "2022-01-31 11:16:54.901085+00:00"; "2022-10-27 21:00:11.425502+00:00"; "Lock conda file for linux-64 OS of the Jupyter Book hosted by the Environmental Data Science Book"; ; "Lock conda file for linux-64"; "2022-01-31 11:16:54.901085+00:00"; a , . ; "https://github.com/Environmental-DS-Book/ocean-modelling-litter-philab/blob/main/.binder/environment.yml"; ; "2022-01-31 11:32:03.379546+00:00"; "2022-10-27 21:00:11.773076+00:00"; "Conda environment when user want to have the same libraries installed without concerns of package versions"; ; "Conda environment"; "2022-01-31 11:32:03.379546+00:00"; a , . ; "https://github.com/Environmental-DS-Book/ocean-modelling-litter-philab/blob/main/.lock/requirements.txt"; ; "2022-01-31 11:27:45.283002+00:00"; "2022-10-27 21:00:07.441883+00:00"; "Pip requirements file containing libraries to install after conda lock"; "text/plain"; ; "Pip requirements for lock conda environments"; "2022-01-31 11:27:45.283002+00:00"; a , . ; "https://github.com/Environmental-DS-Book/ocean-modelling-litter-philab/blob/main/ocean-modelling-litter-philab.ipynb"; ; "2022-01-28 16:07:32.857476+00:00"; "2022-10-27 21:00:10.913044+00:00"; "Jupyter Notebook hosted by the Environmental Data Science Book"; ; "Jupyter notebook"; "2022-01-28 16:07:32.857476+00:00"; a , , . dct:conformsTo ; ; a . "imagery notebook"; a ; "43.336724313326556"; "42.6" . "book"; a ; "14.147018030513175"; "10.2" . "earth sciences"; a ; "100.0"; "0.5625630021095276" . "notebook"; a ; "12.891113892365455"; "10.3" . "detection"; a ; "15.395284327323164"; "11.1" . "object"; a ; "9.431345353675452"; "6.8" . "imagery"; a ; "13.642052565707132"; "10.9" . "publishing"; a ; "100.0"; "4.8" . "refer to the detecting"; a ; "1.7293997965412005"; "1.7" . "POLYGON ((26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471))"; a , . "POLYGON ((-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663))"; a , . "POLYGON ((-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054))"; a , . "POLYGON ((119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617))"; a , . a . "engineering"; a ; "100.0"; "0.5148147940635681" . "research object"; a ; "34.28280773143439"; "33.7" . "Literature"; a ; "Arts, culture and entertainment/Arts and entertainment/Literature" . "notebook"; a ; "12.621359223300972"; "9.1" . "Environmental Data Science book"; a ; "15.259409969481181"; "15.0" . "The research object refers to the Detecting floating objects using deep learning and Sentinel-2 imagery notebook published in the Environmental Data Science book."; a ; "56.45645645645645"; "56.4" . "Book industry"; a ; "Economy, business and finance/Economic sector/Media/Book industry" . "research"; a ; "12.621359223300972"; "9.1" . "detecting"; a ; "15.269086357947433"; "12.2" . "communications and radar"; a ; "100.0"; "0.5148147940635681" . "The Alan Turing Institute"; "Alejandro Coca-Castro"; a . "European Space Agency Φ-lab"; "Jamila Mifdal"; a . "European Space Agency Φ-lab"; "Raquel Carmo"; a . } sub:provenance { sub:assertion prov:wasDerivedFrom . } sub:pubinfo { this: dct:created "2025-11-11T16:27:34.458+01:00"^^xsd:dateTime; npx:introduces ; a npx:RoCrateNanopub; rdfs:label "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book" . sub:sig npx:hasAlgorithm "RSA"; npx:hasPublicKey "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA4pPaESKwmC6l37P86K6TNLq6yeQtc7m9CvcqauLs/1FC0viHvQnFBgxj0a+loPDv/Egwe6OqFpa0iW9Ypnyz9YPoh+pxbRXonbuMOb+8Ry9hXZ+TEKfWjhjVDGEaClwfRwglh2HI/xfV4CD9AgvDOEoZQiyta8a90PYwJ3G6e70oCHTn61+OWTkI9KRYHOYgg3btdy2Z7q/30PTFawb2ZT5aIfIJYobUYv2a7yhtcqWCHZeKv0bxGnRjTFNx1rscBMlLJSzvRtpQc1cCRVEPFZHo1adaXCI9tGvn4cxeNQ96y8dxkN1XhpaJairde+23MDzf42Oe97KG2HYzKiyVnQIDAQAB"; npx:hasSignature "vjXtrjhQD2cWTuxirvrxmSTrQkR0Xe/S36fbW6RXtew9u/d4KsYJVt0B4qG5QfU/3m968UTKMISrLk44VoteC4KfXDWV9LI+6KKz19hap+fSiQU1oTA6KmkcRBtgUu2TaMni4hW7OZj8EXKuzGhNQjLqYH6bN/RMqvvJJjKhYTAGTodppwMdsoNLQeMsACEtc8k/t6MijY5lA+jvNENufk0DDfzt70+DEuhKMncui7dCcSGPUEwqbriJ9axcXCAccMgaa3vFbZY28hwCSNMb/qG87gLVkSYSOLZfZvECv38S6hjf7/aIvU/GpPjykNMhW6OwOtIXB5y/hrXTkZ4ZWw=="; npx:hasSignatureTarget this:; npx:signedBy . }