@prefix this: . @prefix sub: . @prefix np: . @prefix dct: . @prefix xsd: . @prefix rdfs: . @prefix prov: . @prefix npx: . sub:Head { this: np:hasAssertion sub:assertion; np:hasProvenance sub:provenance; np:hasPublicationInfo sub:pubinfo; a np:Nanopublication . } sub:assertion { ""; "Oceanography"; a . ""; "Environmental research"; a . ""; "Earth observation"; a . "Book industry"; a ; "Economy, business and finance/Economic sector/Media/Book industry" . "Environmental Data Science"; a ; "16.02002503128911"; "12.8" . "notebook"; a ; "12.621359223300972"; "9.1" . "imagery"; a ; "13.642052565707132"; "10.9" . "book"; a ; "14.147018030513175"; "10.2" . "Environmental Data Science book"; a ; "15.259409969481181"; "15.0" . "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book."; a ; "43.54354354354354"; "43.5" . "POLYGON ((26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471))"; "26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471"; a . "POLYGON ((119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617))"; "119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617"; a . ; "57cf5fce-77d6-4bd5-aaa2-c328390f4e41"; "POLYGON ((26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471))"; a . "POLYGON ((-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663))"; "-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663"; a . ; "e403e2bc-2fa0-44c7-9120-36e5a9967b7e"; "POLYGON ((-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054))"; a . "service-account-enrichment"; a . "POLYGON ((-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054))"; "-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054"; a . ; "f35c5d9c-7ef7-4ed0-a56b-3e9c0efcf13f"; "POLYGON ((119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617))"; a . ; "f52396ac-2798-42d4-a6f2-1bc74ae669e3"; "POLYGON ((-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663))"; a . dct:doi "https://doi.org/10.24424/g1bk-dv49"; "False"; "https://w3id.org/ro-id/b34facfa-cea8-48f5-89f6-f11ce00812a9"; "2023-03-20 16:26:43.973361+00:00"; "mailto:environmental.ds.book@gmail.com"; , , ; , ; , , , ; "1818485"^^xsd:integer; "https://api.rohub.org/api/ros/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/crate/download/"; ; ; ; "2022-01-28 16:07:18.008253+00:00"; "2024-03-05 12:17:35.087630+00:00"; "2022-01-28 16:07:18.008253+00:00"; "The research object refers to the Detecting floating objects using deep learning and Sentinel-2 imagery notebook published in the Environmental Data Science book."; "application/ld+json"; , , , , ; "https://w3id.org/ro-id/42a5f00d-7eee-4dbe-85d6-c192fa6e135e"; "Environmental Science"; ; "Jupyter Notebook"; "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book - snapshot", "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book"; ; ; "MANUAL"; "https://w3id.org/ro-id/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/0edc91a9-9049-4357-bad7-677880c8fd8a", "https://w3id.org/ro-id/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/19f9ef3f-8678-48f5-a9ac-cf364939dcda", "https://w3id.org/ro-id/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/4b55fad1-092b-4657-a004-aafc05499e18", "https://w3id.org/ro-id/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/e2eba045-3c2c-44a1-aa39-06cc232d05f9"; a , , , , ; "https://w3id.org/ro-id/4e7f08b1-a7d0-4112-a463-d0c45b4770e4"; "https://w3id.org/ro-id/152415ea-1d9a-41f9-9984-c673b40c9768", "https://w3id.org/ro-id/221f0e07-34c9-4290-a4ea-5f0d65495ec4", "https://w3id.org/ro-id/695dd599-8887-4125-881d-733a40814c52", "https://w3id.org/ro-id/6c71b727-5323-4a4a-be22-860d8acbc45f", "https://w3id.org/ro-id/8ad55fac-d1ee-4f7c-840b-b2bd4a724c10", "https://w3id.org/ro-id/9b64005e-2a10-4252-b6ac-5a432b0d3277", "https://w3id.org/ro-id/bbebb776-ec07-431e-99c6-37c5393397db", "https://w3id.org/ro-id/f03c2acc-c554-4f4b-9df6-bd410b93a5a2"; "https://w3id.org/ro-id/98c9727a-f092-4128-ac71-317f644c8182", "https://w3id.org/ro-id/d73964e2-62b9-4d8d-b8a9-3094f11d67bf"; "https://w3id.org/ro-id/0e3d9282-04db-4463-8fb3-591727faf80d", "https://w3id.org/ro-id/6f740a48-5734-4483-99c0-29afd555ea6a", "https://w3id.org/ro-id/ac52fad5-b60d-494f-b00c-37b81641f4b8", "https://w3id.org/ro-id/fde959e7-40ae-4830-a910-ae970edc2f29"; "https://w3id.org/ro-id/131ecbc9-9305-4c2b-b3ca-d71f975cfb0f", "https://w3id.org/ro-id/2190b4f5-d076-45b5-aa45-05078c46dc37", "https://w3id.org/ro-id/472d3856-c194-4465-b588-f0732c7aae8a", "https://w3id.org/ro-id/68836489-c10c-4e56-aa25-8fe25262195b", "https://w3id.org/ro-id/6a23432b-fc26-417b-8b67-904b39cc8ac1", "https://w3id.org/ro-id/90b8a634-528f-4e07-bb16-62e6202c2bad", "https://w3id.org/ro-id/d966a869-46b0-45ca-b474-20d617629f8f"; "https://w3id.org/ro-id/e5a3a5b9-046b-4bf6-ac45-bd242cbccc7e", "https://w3id.org/ro-id/edf48a39-b691-48a6-8a15-16e617128d24"; "https://w3id.org/ro-id/26829b0f-b79f-4176-a622-2830ef8917c7", "https://w3id.org/ro-id/6ce2bad3-a951-4bdc-8b78-1136029eeaa1", "https://w3id.org/ro-id/9c44801a-7cf6-4714-b877-6b48e3d1ef14", "https://w3id.org/ro-id/a4f5de84-2385-46e1-9061-a903cd4f13ad", "https://w3id.org/ro-id/cc8ce773-a8f0-4e7a-be85-12594199ca6a"; "https://w3id.org/ro-id/2b4ddd34-5497-459a-87ad-dfc7dbcc4754", "https://w3id.org/ro-id/dc40a687-4d4c-4c9a-b49d-c3c8e37d336c"; "Raquel Carmo, Jamila Mifdal, and Alejandro Coca-Castro. \"Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book.\" ROHub. Jan 28 ,2022. https://doi.org/10.24424/g1bk-dv49." . a . , ; "biblio"; a , . , , , , , ; "tool"; a , . ; "input"; a , . ; "output"; a , . ; "https://raw.githubusercontent.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/main/notebook.ipynb"; ; "2022-01-28 16:07:32.857476+00:00"; "2023-03-20 16:26:39.058397+00:00"; "Jupyter Notebook hosted by the Environmental Data Science Book"; ; "Jupyter notebook"; "2022-01-28 16:07:32.857476+00:00"; a , , ; "https://w3id.org/ro-id/42a5f00d-7eee-4dbe-85d6-c192fa6e135e/resources/83b2492d-b4bb-4f8c-acc9-775e288a971c" . ; "https://github.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/blob/main/.lock/conda-linux-64.lock"; ; "2022-01-31 11:16:54.901085+00:00"; "2023-03-20 16:26:39.778423+00:00"; "Lock conda file for linux-64 OS of the Jupyter Book hosted by the Environmental Data Science Book"; ; "Lock conda file for linux-64"; "2022-01-31 11:16:54.901085+00:00"; a , . ; "https://doi.org/10.5281/zenodo.5911143"; ; "2022-01-28 16:07:38.160206+00:00"; "2023-03-20 16:26:43.879157+00:00"; "Contains outputs, (predictions and interactive figure), generated in the Jupyter notebook of Detecting floating objects using deep learning and Sentinel-2 imagery"; ; "Outputs"; "2022-01-28 16:07:38.160206+00:00"; a , , . ; "https://github.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/blob/main/.lock/requirements.txt"; ; "2022-01-31 11:27:45.283002+00:00"; "2023-03-20 16:26:37.078794+00:00"; "Pip requirements file containing libraries to install after conda lock"; "text/plain"; ; "Pip requirements for lock conda environments"; "2022-01-31 11:27:45.283002+00:00"; a , . ; "https://doi.org/10.5194/isprs-annals-V-3-2021-285-2021"; ; "2022-01-28 16:07:43.339740+00:00"; "2023-03-20 16:26:38.898474+00:00"; "Publication with further details of the modelling published in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences"; ; "Towards detecting floating objects on a global scale with learned spatial features using sentinel 2"; "2022-01-28 16:07:43.339740+00:00"; a dct:BibliographicResource, , . ; "https://edsbook.org/notebooks/gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/notebook.html"; ; "2022-01-31 11:16:52.095424+00:00"; "2023-03-20 16:26:43.642918+00:00"; "Rendered version of the Jupyter Notebook hosted by the Environmental Data Science Book"; "text/html"; ; "Online rendered version of the Jupyter notebook"; "2022-01-31 11:16:52.095424+00:00"; a , , . ; "1799691"^^xsd:integer; "https://api.rohub.org/api/resources/8c66557a-510d-43ca-aab9-deb3a05b805c/download/"; ; "2023-03-05 21:59:06.519381+00:00"; "2023-03-20 16:26:38.219207+00:00"; "image/png"; ; "sketch_680px.png"; "2023-03-05 21:59:06.519381+00:00"; a , , . ; "https://github.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/blob/main/.lock/conda-osx-64.lock"; ; "2022-01-31 11:16:56.332731+00:00"; "2023-03-20 16:26:36.488124+00:00"; "Lock conda file for osx-64 OS of the Jupyter Book hosted by the Environmental Data Science Book"; ; "Lock conda file for osx-64"; "2022-01-31 11:16:56.332731+00:00"; a , . ; "https://raw.githubusercontent.com/eds-book-gallery/b34facfa-cea8-48f5-89f6-f11ce00812a9/main/.binder/environment.yml"; ; "2022-01-31 11:32:03.379546+00:00"; "2023-03-20 16:26:39.940401+00:00"; "Conda environment when user want to have the same libraries installed without concerns of package versions"; ; "Conda environment"; "2022-01-31 11:32:03.379546+00:00"; a , . ; "https://210507-004.oceansvirtual.com/view/content/skdwP611e3583eba2b/ecf65c2aaf278557ad05c213247d67a54196c9376a0aed8f1875681f182daeed"; ; "2022-01-28 16:07:40.875698+00:00"; "2023-03-20 16:26:43.758517+00:00"; "Related publication of the modelling published in OCEANS 2021"; ; "Detecting macro floating objects on coastal water bodies using sentinel-2 data"; "2022-01-28 16:07:40.875698+00:00"; a dct:BibliographicResource, , . ; "https://doi.org/10.5281/zenodo.5827376"; ; "2022-01-28 16:07:34.662177+00:00"; "2023-03-20 16:26:36.244852+00:00"; "Contains input analysis-ready input images used in the Jupyter notebook of Detecting floating objects using deep learning and Sentinel-2 imagery"; ; "Input images"; "2022-01-28 16:07:34.662177+00:00"; a , , . dct:conformsTo ; ; a . "Sentinel-2"; a ; "17.521902377972463"; "14.0" . "publishing"; a ; "100.0"; "4.8" . "research"; a ; "12.891113892365455"; "10.3" . "detection"; a ; "15.395284327323164"; "11.1" . "notebook"; a ; "12.891113892365455"; "10.3" . "imagery"; a ; "13.730929264909848"; "9.9" . "deep learning"; a ; "5.391658189216684"; "5.3" . "Language"; a ; "Arts, culture and entertainment/Culture/Language" . "physical object"; a ; "11.511789181692096"; "8.3" . "object"; a ; "11.76470588235294"; "9.4" . "earth sciences"; a ; "100.0"; "0.5625630021095276" . "learning"; a ; "10.540915395284328"; "7.6" . "research object"; a ; "34.28280773143439"; "33.7" . "refer to the detecting"; a ; "1.7293997965412005"; "1.7" . "Literature"; a ; "Arts, culture and entertainment/Arts and entertainment/Literature" . "POLYGON ((26.521543885417145 39.03722381230471, 26.52744474524991 39.03722381230471, 26.52744474524991 39.04105711064335, 26.521543885417145 39.04105711064335, 26.521543885417145 39.03722381230471))"; a , . "POLYGON ((-43.2315509040757 -22.80675019122663, -43.02418396071632 -22.80675019122663, -43.02418396071632 -22.678831998280632, -43.2315509040757 -22.678831998280632, -43.2315509040757 -22.80675019122663))"; a , . "POLYGON ((-86.82548387 20.977342054, -86.751891297 20.977342054, -86.751891297 21.033273193, -86.82548387 21.033273193, -86.82548387 20.977342054))"; a , . "POLYGON ((119.12620106576212 39.27393119797617, 119.19563809273966 39.27393119797617, 119.19563809273966 39.30980175207518, 119.12620106576212 39.30980175207518, 119.12620106576212 39.27393119797617))"; a , . a . "research"; a ; "12.621359223300972"; "9.1" . "imagery notebook"; a ; "43.336724313326556"; "42.6" . "geology"; a ; "100.0"; "0.5625630021095276" . "detecting"; a ; "15.269086357947433"; "12.2" . "The research object refers to the Detecting floating objects using deep learning and Sentinel-2 imagery notebook published in the Environmental Data Science book."; a ; "56.45645645645645"; "56.4" . "communications and radar"; a ; "100.0"; "0.5148147940635681" . "engineering"; a ; "100.0"; "0.5148147940635681" . "object"; a ; "9.431345353675452"; "6.8" . "Education"; a ; "Education" . "environmental.ds.book@gmail.com"; "Environmental Data Science Book Community"; a , . "The Alan Turing Institute"; "Alejandro Coca-Castro"; a . "European Space Agency Φ-lab"; "Jamila Mifdal"; a . "European Space Agency Φ-lab"; "Raquel Carmo"; a . } sub:provenance { sub:assertion prov:wasDerivedFrom . } sub:pubinfo { this: dct:created "2025-11-11T16:12:35.746+01:00"^^xsd:dateTime; npx:introduces ; a npx:RoCrateNanopub; rdfs:label "Detecting floating objects using deep learning and Sentinel-2 imagery (Jupyter Notebook) published in the Environmental Data Science book - snapshot" . sub:sig npx:hasAlgorithm "RSA"; npx:hasPublicKey "MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA4pPaESKwmC6l37P86K6TNLq6yeQtc7m9CvcqauLs/1FC0viHvQnFBgxj0a+loPDv/Egwe6OqFpa0iW9Ypnyz9YPoh+pxbRXonbuMOb+8Ry9hXZ+TEKfWjhjVDGEaClwfRwglh2HI/xfV4CD9AgvDOEoZQiyta8a90PYwJ3G6e70oCHTn61+OWTkI9KRYHOYgg3btdy2Z7q/30PTFawb2ZT5aIfIJYobUYv2a7yhtcqWCHZeKv0bxGnRjTFNx1rscBMlLJSzvRtpQc1cCRVEPFZHo1adaXCI9tGvn4cxeNQ96y8dxkN1XhpaJairde+23MDzf42Oe97KG2HYzKiyVnQIDAQAB"; npx:hasSignature "EPj5aiEASKnjyms5hXAx6LkBSxLAgdFV6xBWsxDlXERYopijB6b/51gkLxbfCK3M+tQeIEK6fQP7tQK8whOYcSoz5prSFzJ+Yf0L3FPXT+/94Hc+GYXGbPdCbeUvp222A3HoJI6ZVWRPiq4MdcEiW8gGRrUimTBfpH1JlrKboUElA8xX3BtMbUf/2Tl0Ywa/VquKKQyxlt4Y4PXh6H1zVE1OK/8dfHPjbn5+6U+orLa5+vanTftthfkz8dosAz47y/nkN7VEMIDWaokJUwMQrnu/7OnuF/nGJQWLKXjKJ0bBq/37IpHoxjMrnMISiQLouJSQg4ZWLVfSvDbQt/MW1g=="; npx:hasSignatureTarget this:; npx:signedBy . }