@prefix this: <https://w3id.org/np/RAi0yZT6cY9B9y8HRBHUVTb-6ciRq_oRG1frJRH0krG8k> .
@prefix sub: <https://w3id.org/np/RAi0yZT6cY9B9y8HRBHUVTb-6ciRq_oRG1frJRH0krG8k#> .
@prefix np: <http://www.nanopub.org/nschema#> .
@prefix dct: <http://purl.org/dc/terms/> .
@prefix pav: <http://purl.org/pav/> .
@prefix nt: <https://w3id.org/np/o/ntemplate/> .
@prefix npx: <http://purl.org/nanopub/x/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix orcid: <https://orcid.org/> .
@prefix ns1: <http://purl.org/np/> .
@prefix prov: <http://www.w3.org/ns/prov#> .
sub:Head {
  this: np:hasAssertion sub:assertion ;
    np:hasProvenance sub:provenance ;
    np:hasPublicationInfo sub:pubinfo ;
    a np:Nanopublication .
}
sub:assertion {
  <http://id.crossref.org/issn/2169-3536> dct:title "IEEE Access" .
  <https://doi.org/10.1109/access.2023.3269660> dct:abstract "Topic modeling comprises a set of machine learning algorithms that allow topics to be extracted from a collection of documents. These algorithms have been widely used in many areas, such as identifying dominant topics in scientific research. However, works addressing such problems focus on identifying static topics, providing snapshots that cannot show how those topics evolve. Aiming to close this gap, in this article, we describe an approach for dynamic article set analysis and classification. This is accomplished by querying open data of notable scientific databases via representational state transfers. After that, we enforce data management practices with a dynamic topic modeling approach on the associated metadata available. As a result, we identify research trends for a given field at specific instants and the referred terminology trends evolution throughout the years. It was possible to detect the associated lexical variation over time in published content, ultimately determining the so-called “hot topics” in arbitrary instants and how they correlate." ;
    dct:date "2023" ;
    dct:isPartOf <http://id.crossref.org/issn/2169-3536> ;
    dct:title "Detecting Favorite Topics in Computing Scientific Literature via Dynamic Topic Modeling" ;
    pav:authoredBy orcid:0000-0001-6071-2921 , orcid:0000-0001-9166-1741 , orcid:0000-0002-8743-4244 , orcid:0000-0003-2031-6443 , orcid:0000-0003-3035-1162 ;
    a <http://purl.org/spar/fabio/ResearchPaper> .
  orcid:0000-0001-6071-2921 <http://schema.org/affiliation> sub:USP ;
    a <http://xmlns.com/foaf/0.1/Person> ;
    <http://xmlns.com/foaf/0.1/name> "Márcio Barbado Júnior" .
  orcid:0000-0001-9166-1741 <http://schema.org/affiliation> sub:USP ;
    <http://schema.org/email> "encinas@usp.br" ;
    a <http://xmlns.com/foaf/0.1/Person> ;
    <http://xmlns.com/foaf/0.1/name> "Rosa Virginia Encinas Quille" .
  orcid:0000-0002-8743-4244 <http://schema.org/affiliation> sub:USP ;
    a <http://xmlns.com/foaf/0.1/Person> ;
    <http://xmlns.com/foaf/0.1/name> "Pedro Luiz Pizzigatti Corrêa" .
  orcid:0000-0003-2031-6443 <http://schema.org/affiliation> sub:USP ;
    a <http://xmlns.com/foaf/0.1/Person> ;
    <http://xmlns.com/foaf/0.1/name> "Felipe Valencia De Almeida" .
  orcid:0000-0003-3035-1162 <http://schema.org/affiliation> sub:USP ;
    a <http://xmlns.com/foaf/0.1/Person> ;
    <http://xmlns.com/foaf/0.1/name> "José Meléndez Barros" .
  sub:USP a <http://xmlns.com/foaf/0.1/Organization> ;
    <http://xmlns.com/foaf/0.1/name> "University of São Paulo" .
}
sub:provenance {
  sub:assertion prov:wasAttributedTo orcid:0000-0002-1267-0234 .
}
sub:pubinfo {
  sub:sig npx:hasAlgorithm "RSA" ;
    npx:hasPublicKey "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCwUtewGCpT5vIfXYE1bmf/Uqu1ojqnWdYxv+ySO80ul8Gu7m8KoyPAwuvaPj0lvPtHrg000qMmkxzKhYknEjq8v7EerxZNYp5B3/3+5ZpuWOYAs78UnQVjbHSmDdmryr4D4VvvNIiUmd0yxci47dTFUj4DvfHnGd6hVe5+goqdcwIDAQAB" ;
    npx:hasSignature "WTrY8uKITEHgDrLdC8eNS8O7W/ptIbwqtWFrpWTDe5A9gu58z8qLjK0qdtunOV1o7j3J4Cw0vrUsMNeKV7e0AILvMAKwv2rn9TF2Zo6NjW0+IIyKECQ9lCavaC0BkDMaxdm5t98WYI1sqJ0xNn9l4M0sP9kufMc0oL0hgpVjo+E=" ;
    npx:hasSignatureTarget this: .
  this: dct:created "2023-11-24T12:26:16.582+01:00"^^xsd:dateTime ;
    dct:creator orcid:0000-0002-1267-0234 ;
    dct:license <https://creativecommons.org/licenses/by/4.0/> ;
    npx:hasNanopubType <http://purl.org/spar/fabio/ScholarlyWork> ;
    npx:introduces <https://doi.org/10.1109/access.2023.3269660> ;
    a npx:ExampleNanopub ;
    rdfs:label "Article: Detecting Favorite Topics in Computing Scientific Literature via Dynamic Topic Modeling" ;
    prov:wasDerivedFrom <https://w3id.org/np/RAA0PugeMkz2RP43YyWQi_ljbFGf1io8AIVHH5cwCShvQ> ;
    nt:wasCreatedFromProvenanceTemplate ns1:RANwQa4ICWS5SOjw7gp99nBpXBasapwtZF1fIM3H2gYTM ;
    nt:wasCreatedFromPubinfoTemplate ns1:RAA2MfqdBCzmz9yVWjKLXNbyfBNcwsMmOqcNUxkk1maIM , ns1:RABngHbKpoJ3U9Nebc8mX_KUdv_vXw28EejqAyQya5zVA , ns1:RATtBNB9Rj1cIwxJyoHBgNn8eeIR06m0H6C6RTRVqSy3E , ns1:RAh1gm83JiG5M6kDxXhaYT1l49nCzyrckMvTzcPn-iv90 ;
    nt:wasCreatedFromTemplate <https://w3id.org/np/RAhPFxesdOZq-w6Z8VBfc1aV9hfN6c5FnJ7XjR0dAMn_I> .
}