@prefix this: <
http://purl.org/np/RAzAGqw_uA1pyc3gmoO9gwJIU2Hwg8NDbmxJUKnte34c8
> .
@prefix sub: <
http://purl.org/np/RAzAGqw_uA1pyc3gmoO9gwJIU2Hwg8NDbmxJUKnte34c8#
> .
@prefix np: <
http://www.nanopub.org/nschema#
> .
@prefix dct: <
http://purl.org/dc/terms/
> .
@prefix owl: <
http://www.w3.org/2002/07/owl#
> .
@prefix nt: <
https://w3id.org/np/o/ntemplate/
> .
@prefix npx: <
http://purl.org/nanopub/x/
> .
@prefix xsd: <
http://www.w3.org/2001/XMLSchema#
> .
@prefix skos: <
http://www.w3.org/2004/02/skos/core#
> .
@prefix rdfs: <
http://www.w3.org/2000/01/rdf-schema#
> .
@prefix orcid: <
https://orcid.org/
> .
@prefix prov: <
http://www.w3.org/ns/prov#
> .
sub:Head
{
this:
np:hasAssertion
sub:assertion
;
np:hasProvenance
sub:provenance
;
np:hasPublicationInfo
sub:pubinfo
;
a
np:Nanopublication
.
}
sub:assertion
{
sub:performance-of-training-with-explicit-reformulation-of-layers-with-learning-residual-functions-with-reference-to-input-layers
a
owl:Class
;
rdfs:label
"performance of training with explicit reformulation of layers with learning residual functions with reference to input layers" ;
skos:definition
"The performance of training deep neural networks with explicit reformulation of layers with learning residual functions with reference to input layers." .
}
sub:provenance
{
sub:assertion
prov:wasAttributedTo
orcid:0000-0002-7114-6459
.
}
sub:pubinfo
{
sub:sig
npx:hasAlgorithm
"RSA" ;
npx:hasPublicKey
"MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCJlM78d80R+gFMoQB1IG3f7AbqqGOCIv4HmZd1cx1KgEWMUUpPsojFNvx84fC/TltcJ8F8JafnbhDXW2HM2MhdK4yC04ROEV1vIgSzjDicHfiqXvMqdPuMyQp4mmCEY7mUoeEW10mWZqjk+S9TnmiAQbFGcpExP8aosr2aTR7CSQIDAQAB" ;
npx:hasSignature
"JQolW8NnE4JjSqpctoKpDrmbFj8OYXH8YnPdOakgvla2iSUd1XhhVLNQnUFDEvQFj/Vmbsd3aBIsxseSoMFDqXRyOBmUC/VOT1c4VvpegGOHmTCjnXqFzrRx/WNM+4H6XfSoOTQB+QLxbtbFnYAkpGCar47Byn+aXA6piUReN3M=" ;
npx:hasSignatureTarget
this:
.
this:
dct:created
"2021-02-22T19:07:39.169+02:00"^^
xsd:dateTime
;
dct:creator
orcid:0000-0002-7114-6459
;
npx:introduces
sub:performance-of-training-with-explicit-reformulation-of-layers-with-learning-residual-functions-with-reference-to-input-layers
;
nt:wasCreatedFromProvenanceTemplate
<
http://purl.org/np/RANwQa4ICWS5SOjw7gp99nBpXBasapwtZF1fIM3H2gYTM
> ;
nt:wasCreatedFromPubinfoTemplate
<
http://purl.org/np/RAA2MfqdBCzmz9yVWjKLXNbyfBNcwsMmOqcNUxkk1maIM
> ;
nt:wasCreatedFromTemplate
<
http://purl.org/np/RAI5I4fWR382un3U71XLdC1xAfHexbpxBd-28728PocOU
> .
}